--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0180 - Wer: 2.0030 - Cer: 1.0182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0211 | 1.0 | 469 | 0.0229 | 2.6548 | 1.3564 | | 0.0192 | 2.0 | 938 | 0.0209 | 2.1622 | 1.1267 | | 0.0149 | 3.0 | 1407 | 0.0193 | 1.3596 | 0.6720 | | 0.0145 | 4.0 | 1876 | 0.0182 | 1.1658 | 0.6142 | | 0.0106 | 5.0 | 2345 | 0.0176 | 1.7265 | 0.9079 | | 0.0121 | 6.0 | 2814 | 0.0171 | 1.5142 | 0.7794 | | 0.0139 | 7.0 | 3283 | 0.0168 | 1.6885 | 0.8300 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0