--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0100 - Wer: 0.1520 - Cer: 0.0580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 0.0083 | 1.0 | 313 | 0.0106 | 0.1573 | 0.0532 | | 0.0075 | 2.0 | 626 | 0.0103 | 0.1544 | 0.0535 | | 0.0076 | 3.0 | 939 | 0.0097 | 0.1605 | 0.0581 | | 0.0059 | 4.0 | 1252 | 0.0095 | 0.1582 | 0.0562 | | 0.0056 | 5.0 | 1565 | 0.0094 | 0.1533 | 0.0623 | | 0.0064 | 6.0 | 1878 | 0.0094 | 0.1736 | 0.0610 | | 0.0052 | 7.0 | 2191 | 0.0094 | 0.1560 | 0.0560 | | 0.0046 | 8.0 | 2504 | 0.0093 | 0.1674 | 0.0567 | | 0.0036 | 9.0 | 2817 | 0.0096 | 0.1437 | 0.0482 | | 0.0036 | 10.0 | 3130 | 0.0095 | 0.1522 | 0.0518 | | 0.0032 | 11.0 | 3443 | 0.0095 | 0.1508 | 0.0520 | | 0.0023 | 12.0 | 3756 | 0.0096 | 0.1466 | 0.0487 | | 0.0028 | 13.0 | 4069 | 0.0096 | 0.1426 | 0.0461 | | 0.0028 | 14.0 | 4382 | 0.0100 | 0.1508 | 0.0582 | | 0.0023 | 14.9536 | 4680 | 0.0097 | 0.1403 | 0.0455 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0