--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 - Wer: 0.0763 - Cer: 0.0310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 0.0046 | 1.0 | 701 | 0.0052 | 0.0782 | 0.0297 | | 0.0035 | 2.0 | 1402 | 0.0049 | 0.0717 | 0.0281 | | 0.0036 | 3.0 | 2103 | 0.0052 | 0.0719 | 0.0290 | | 0.0026 | 4.0 | 2804 | 0.0055 | 0.0671 | 0.0267 | | 0.0012 | 5.0 | 3505 | 0.0058 | 0.0699 | 0.0275 | | 0.0017 | 6.0 | 4206 | 0.0062 | 0.0691 | 0.0283 | | 0.0012 | 7.0 | 4907 | 0.0067 | 0.0710 | 0.0285 | | 0.0007 | 8.0 | 5608 | 0.0071 | 0.0681 | 0.0273 | | 0.0005 | 9.0 | 6309 | 0.0075 | 0.0704 | 0.0287 | | 0.0005 | 10.0 | 7010 | 0.0077 | 0.0695 | 0.0278 | | 0.0003 | 11.0 | 7711 | 0.0079 | 0.0693 | 0.0270 | | 0.0001 | 12.0 | 8412 | 0.0080 | 0.0728 | 0.0285 | | 0.0002 | 13.0 | 9113 | 0.0081 | 0.0738 | 0.0289 | | 0.0002 | 14.0 | 9814 | 0.0093 | 0.0770 | 0.0318 | | 0.0001 | 14.9793 | 10500 | 0.0083 | 0.0717 | 0.0284 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0