--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0125 - Wer: 0.1057 - Cer: 0.0420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0116 | 1.0 | 469 | 0.0084 | 0.0929 | 0.0328 | | 0.0066 | 2.0 | 938 | 0.0075 | 0.0923 | 0.0344 | | 0.0058 | 3.0 | 1407 | 0.0074 | 0.0914 | 0.0346 | | 0.0041 | 4.0 | 1876 | 0.0077 | 0.0883 | 0.0336 | | 0.0043 | 5.0 | 2345 | 0.0082 | 0.0892 | 0.0330 | | 0.0028 | 6.0 | 2814 | 0.0089 | 0.0890 | 0.0344 | | 0.0024 | 7.0 | 3283 | 0.0094 | 0.0887 | 0.0329 | | 0.0011 | 8.0 | 3752 | 0.0099 | 0.0901 | 0.0341 | | 0.0015 | 9.0 | 4221 | 0.0104 | 0.0874 | 0.0316 | | 0.0017 | 10.0 | 4690 | 0.0108 | 0.0887 | 0.0336 | | 0.0005 | 11.0 | 5159 | 0.0111 | 0.0847 | 0.0307 | | 0.0003 | 12.0 | 5628 | 0.0113 | 0.0885 | 0.0331 | | 0.0003 | 13.0 | 6097 | 0.0115 | 0.0896 | 0.0333 | | 0.0005 | 14.0 | 6566 | 0.0131 | 0.1070 | 0.0423 | | 0.001 | 15.0 | 7035 | 0.0116 | 0.0900 | 0.0333 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0