--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0256 - Wer: 0.1250 - Cer: 0.0445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 0.0263 | 0.9973 | 187 | 0.0205 | 0.1624 | 0.0613 | | 0.0093 | 2.0 | 375 | 0.0149 | 0.1519 | 0.0529 | | 0.0051 | 2.9973 | 562 | 0.0157 | 0.1580 | 0.0512 | | 0.004 | 4.0 | 750 | 0.0181 | 0.1636 | 0.0539 | | 0.002 | 4.9973 | 937 | 0.0193 | 0.1557 | 0.0502 | | 0.0011 | 6.0 | 1125 | 0.0206 | 0.1558 | 0.0506 | | 0.0009 | 6.9973 | 1312 | 0.0213 | 0.1513 | 0.0498 | | 0.0005 | 8.0 | 1500 | 0.0214 | 0.1544 | 0.0504 | | 0.0004 | 8.9973 | 1687 | 0.0220 | 0.1464 | 0.0458 | | 0.0004 | 10.0 | 1875 | 0.0216 | 0.1459 | 0.0461 | | 0.0002 | 10.9973 | 2062 | 0.0224 | 0.1452 | 0.0454 | | 0.0001 | 12.0 | 2250 | 0.0224 | 0.1437 | 0.0452 | | 0.0001 | 12.9973 | 2437 | 0.0234 | 0.2224 | 0.0832 | | 0.0 | 14.0 | 2625 | 0.0231 | 0.1356 | 0.0540 | | 0.0 | 14.9973 | 2812 | 0.0236 | 0.2134 | 0.0797 | | 0.0 | 16.0 | 3000 | 0.0241 | 0.2159 | 0.0796 | | 0.0 | 16.9973 | 3187 | 0.0253 | 0.1338 | 0.0517 | | 0.0 | 18.0 | 3375 | 0.0257 | 0.1271 | 0.0493 | | 0.0 | 18.9973 | 3562 | 0.0264 | 0.1287 | 0.0492 | | 0.0 | 19.9467 | 3740 | 0.0266 | 0.1280 | 0.0489 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1