--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0081 - Wer: 0.0885 - Cer: 0.0350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.007 | 1.0 | 469 | 0.0069 | 0.0927 | 0.0352 | | 0.0076 | 2.0 | 938 | 0.0065 | 0.0919 | 0.0353 | | 0.0036 | 3.0 | 1407 | 0.0065 | 0.0905 | 0.0350 | | 0.0041 | 4.0 | 1876 | 0.0068 | 0.0887 | 0.0340 | | 0.003 | 5.0 | 2345 | 0.0071 | 0.0876 | 0.0330 | | 0.003 | 6.0 | 2814 | 0.0076 | 0.0900 | 0.0358 | | 0.0024 | 7.0 | 3283 | 0.0080 | 0.0916 | 0.0349 | | 0.002 | 8.0 | 3752 | 0.0086 | 0.0889 | 0.0329 | | 0.0015 | 9.0 | 4221 | 0.0089 | 0.1674 | 0.0708 | | 0.0003 | 10.0 | 4690 | 0.0094 | 0.1690 | 0.0731 | | 0.0005 | 11.0 | 5159 | 0.0097 | 0.1658 | 0.0705 | | 0.0009 | 12.0 | 5628 | 0.0099 | 0.1669 | 0.0714 | | 0.0005 | 13.0 | 6097 | 0.0101 | 0.1672 | 0.0712 | | 0.0004 | 14.0 | 6566 | 0.0118 | 0.1017 | 0.0411 | | 0.0001 | 15.0 | 7035 | 0.0103 | 0.1660 | 0.0713 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0