--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny AR - BH results: [] --- # Whisper tiny AR - BH This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 0.0061 - Wer: 0.0788 - Cer: 0.0318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.008 | 1.0 | 469 | 0.0055 | 0.0719 | 0.0275 | | 0.0064 | 2.0 | 938 | 0.0054 | 0.0776 | 0.0285 | | 0.0047 | 3.0 | 1407 | 0.0056 | 0.0711 | 0.0268 | | 0.0046 | 4.0 | 1876 | 0.0059 | 0.0740 | 0.0275 | | 0.0026 | 5.0 | 2345 | 0.0062 | 0.0726 | 0.0262 | | 0.0018 | 6.0 | 2814 | 0.0066 | 0.0749 | 0.0299 | | 0.001 | 7.0 | 3283 | 0.0070 | 0.0762 | 0.0293 | | 0.001 | 8.0 | 3752 | 0.0074 | 0.0776 | 0.0306 | | 0.0005 | 9.0 | 4221 | 0.0077 | 0.0766 | 0.0299 | | 0.0007 | 10.0 | 4690 | 0.0079 | 0.0760 | 0.0305 | | 0.0004 | 11.0 | 5159 | 0.0082 | 0.0766 | 0.0300 | | 0.0002 | 12.0 | 5628 | 0.0084 | 0.0775 | 0.0310 | | 0.0001 | 13.0 | 6097 | 0.0085 | 0.0755 | 0.0295 | | 0.0001 | 14.0 | 6566 | 0.0100 | 0.0935 | 0.0394 | | 0.0002 | 15.0 | 7035 | 0.0086 | 0.0758 | 0.0300 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0