File size: 2,671 Bytes
8be09dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486b63a
d50f355
 
8be09dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53746d9
8be09dc
 
 
 
 
7ceafc1
8be09dc
 
41c80ff
8be09dc
 
 
 
d50f355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be09dc
 
 
 
7ceafc1
 
8be09dc
7ceafc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper tiny AR - BH

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0061
- Wer: 0.0763
- Cer: 0.0310

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 0.0046        | 1.0     | 701   | 0.0052          | 0.0782 | 0.0297 |
| 0.0035        | 2.0     | 1402  | 0.0049          | 0.0717 | 0.0281 |
| 0.0036        | 3.0     | 2103  | 0.0052          | 0.0719 | 0.0290 |
| 0.0026        | 4.0     | 2804  | 0.0055          | 0.0671 | 0.0267 |
| 0.0012        | 5.0     | 3505  | 0.0058          | 0.0699 | 0.0275 |
| 0.0017        | 6.0     | 4206  | 0.0062          | 0.0691 | 0.0283 |
| 0.0012        | 7.0     | 4907  | 0.0067          | 0.0710 | 0.0285 |
| 0.0007        | 8.0     | 5608  | 0.0071          | 0.0681 | 0.0273 |
| 0.0005        | 9.0     | 6309  | 0.0075          | 0.0704 | 0.0287 |
| 0.0005        | 10.0    | 7010  | 0.0077          | 0.0695 | 0.0278 |
| 0.0003        | 11.0    | 7711  | 0.0079          | 0.0693 | 0.0270 |
| 0.0001        | 12.0    | 8412  | 0.0080          | 0.0728 | 0.0285 |
| 0.0002        | 13.0    | 9113  | 0.0081          | 0.0738 | 0.0289 |
| 0.0002        | 14.0    | 9814  | 0.0093          | 0.0770 | 0.0318 |
| 0.0001        | 14.9793 | 10500 | 0.0083          | 0.0717 | 0.0284 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0