File size: 2,620 Bytes
8be09dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53ec9f
 
 
8be09dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53746d9
8be09dc
 
 
 
 
7ceafc1
8be09dc
 
41c80ff
8be09dc
 
 
 
9a3eddf
 
f53ec9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be09dc
 
 
 
7ceafc1
 
8be09dc
7ceafc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper tiny AR - BH
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper tiny AR - BH

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0125
- Wer: 0.1057
- Cer: 0.0420

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0116        | 1.0   | 469  | 0.0084          | 0.0929 | 0.0328 |
| 0.0066        | 2.0   | 938  | 0.0075          | 0.0923 | 0.0344 |
| 0.0058        | 3.0   | 1407 | 0.0074          | 0.0914 | 0.0346 |
| 0.0041        | 4.0   | 1876 | 0.0077          | 0.0883 | 0.0336 |
| 0.0043        | 5.0   | 2345 | 0.0082          | 0.0892 | 0.0330 |
| 0.0028        | 6.0   | 2814 | 0.0089          | 0.0890 | 0.0344 |
| 0.0024        | 7.0   | 3283 | 0.0094          | 0.0887 | 0.0329 |
| 0.0011        | 8.0   | 3752 | 0.0099          | 0.0901 | 0.0341 |
| 0.0015        | 9.0   | 4221 | 0.0104          | 0.0874 | 0.0316 |
| 0.0017        | 10.0  | 4690 | 0.0108          | 0.0887 | 0.0336 |
| 0.0005        | 11.0  | 5159 | 0.0111          | 0.0847 | 0.0307 |
| 0.0003        | 12.0  | 5628 | 0.0113          | 0.0885 | 0.0331 |
| 0.0003        | 13.0  | 6097 | 0.0115          | 0.0896 | 0.0333 |
| 0.0005        | 14.0  | 6566 | 0.0131          | 0.1070 | 0.0423 |
| 0.001         | 15.0  | 7035 | 0.0116          | 0.0900 | 0.0333 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0