Barani1-t commited on
Commit
f09ad35
1 Parent(s): 93855f7

End of training

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-tiny
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: whisper-tiny-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: gtzan
18
+ type: gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.865
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-tiny-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the gtzan dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5357
36
+ - Accuracy: 0.865
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
69
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
70
+ | 1.8988 | 1.0 | 50 | 0.475 | 1.8064 |
71
+ | 1.2155 | 2.0 | 100 | 0.66 | 1.2221 |
72
+ | 0.9136 | 3.0 | 150 | 0.76 | 0.9259 |
73
+ | 0.7999 | 4.0 | 200 | 0.8 | 0.7412 |
74
+ | 0.4499 | 5.0 | 250 | 0.785 | 0.6758 |
75
+ | 0.2986 | 6.0 | 300 | 0.845 | 0.5601 |
76
+ | 0.2432 | 7.0 | 350 | 0.825 | 0.5678 |
77
+ | 0.1316 | 8.0 | 400 | 0.845 | 0.5153 |
78
+ | 0.1685 | 9.0 | 450 | 0.86 | 0.4840 |
79
+ | 0.1344 | 10.0 | 500 | 0.86 | 0.4803 |
80
+ | 0.0499 | 11.0 | 550 | 0.5167 | 0.855 |
81
+ | 0.0969 | 12.0 | 600 | 0.5370 | 0.85 |
82
+ | 0.0351 | 13.0 | 650 | 0.5022 | 0.86 |
83
+ | 0.0452 | 14.0 | 700 | 0.5289 | 0.855 |
84
+ | 0.0167 | 15.0 | 750 | 0.5357 | 0.865 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.34.1
90
+ - Pytorch 2.1.0+cu118
91
+ - Datasets 2.14.6
92
+ - Tokenizers 0.14.1