--- language: - en license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - Nondzu/Mistral-7B-Instruct-v0.2-code-ft - NousResearch/Nous-Hermes-2-Mistral-7B-DPO - cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO model-index: - name: Gonzo-Chat-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.02 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.4 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.75 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.23 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.74 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.61 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard --- # Gonzo-Chat-7B Gonzo-Chat-7B is a merged LLM based on Mistral v0.01 with a 8192 Context length that likes to chat, roleplay, work with agents, do some lite programming, and then beat the brakes off you in the back alley... The ***BEST*** Open Source 7B **Street Fighting** LLM of 2024!!! ![SF-III.jpg](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/txhGhwRWWbZAuKQET-v8F.jpeg) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Badgids__Gonzo-Chat-7B) | Metric | Value | | --------------------------------- | ----: | | Avg. | 66.63 | | AI2 Reasoning Challenge (25-Shot) | 65.02 | | HellaSwag (10-Shot) | 85.40 | | MMLU (5-Shot) | 63.75 | | TruthfulQA (0-shot) | 60.23 | | Winogrande (5-shot) | 77.74 | | GSM8k (5-shot) | 47.61 | ## LLM-Colosseum Results All contestents fought using the same LLM-Colosseum default settings. Each contestant fought 25 rounds with every other contestant. https://github.com/OpenGenerativeAI/llm-colosseum ### Gonzo-Chat-7B .vs Mistral v0.2, Dolphon-Mistral v0.2, Deepseek-Coder-6.7b-instruct ![games-won.png](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/gZHRuz7KO6-czOEcPwZw_.png) ![download.png](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/UubKr4WlnWjnmt8Eh9xkk.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO](https://huggingface.co./eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO) as a base. ### Models Merged The following models were included in the merge: * [Nondzu/Mistral-7B-Instruct-v0.2-code-ft](https://huggingface.co./Nondzu/Mistral-7B-Instruct-v0.2-code-ft) * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co./NousResearch/Nous-Hermes-2-Mistral-7B-DPO) * [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co./cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO # No parameters necessary for base model - model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser parameters: density: 0.53 weight: 0.4 - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: density: 0.53 weight: 0.3 - model: Nondzu/Mistral-7B-Instruct-v0.2-code-ft parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO parameters: int8_mask: true dtype: bfloat16 ```