Merge branch 'main' of https://huggingface.co./BVRA/wildlife-mega-L-384
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- ecology
|
5 |
+
- animals
|
6 |
+
- re-identification
|
7 |
+
library_name: wildlife-datasets
|
8 |
+
license: cc-by-nc-4.0
|
9 |
+
---
|
10 |
+
# Model card for MegaDescriptor-L-384
|
11 |
+
|
12 |
+
A Swin-L image feature model. Superwisely pre-trained on animal re-identification datasets.
|
13 |
+
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
- **Model Type:** Animal re-identification / feature backbone
|
17 |
+
- **Model Stats:**
|
18 |
+
- Params (M): 228.8
|
19 |
+
- Image size: 384 x 384
|
20 |
+
- Architecture: swin_large_patch4_window12_384
|
21 |
+
- **Paper:** [WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification](https://openaccess.thecvf.com/content/WACV2024/html/Cermak_WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification_WACV_2024_paper.html)
|
22 |
+
- **Related Papers:**
|
23 |
+
- [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
24 |
+
- [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/pdf/2304.07193.pdf)
|
25 |
+
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
|
26 |
+
|
27 |
+
## Model Usage
|
28 |
+
### Image Embeddings
|
29 |
+
```python
|
30 |
+
|
31 |
+
import timm
|
32 |
+
import torch
|
33 |
+
import torchvision.transforms as T
|
34 |
+
|
35 |
+
from PIL import Image
|
36 |
+
from urllib.request import urlopen
|
37 |
+
|
38 |
+
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-384", pretrained=True)
|
39 |
+
model = model.eval()
|
40 |
+
|
41 |
+
train_transforms = T.Compose([T.Resize(size=(384, 384)),
|
42 |
+
T.ToTensor(),
|
43 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
44 |
+
|
45 |
+
img = Image.open(urlopen(
|
46 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
47 |
+
))
|
48 |
+
|
49 |
+
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
50 |
+
# output is a (1, num_features) shaped tensor
|
51 |
+
```
|
52 |
+
|
53 |
+
## Citation
|
54 |
+
|
55 |
+
```bibtex
|
56 |
+
@inproceedings{vcermak2024wildlifedatasets,
|
57 |
+
title={WildlifeDatasets: An open-source toolkit for animal re-identification},
|
58 |
+
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas},
|
59 |
+
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
|
60 |
+
pages={5953--5963},
|
61 |
+
year={2024}
|
62 |
+
}
|
63 |
+
```
|