BAAI
/

ldwang commited on
Commit
01fe9c0
·
1 Parent(s): 59ebfa5
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,391 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+
6
+ <h1 align="center">FlagEmbedding</h1>
7
+
8
+
9
+ <h4 align="center">
10
+ <p>
11
+ <a href=#model-list>Model List</a> |
12
+ <a href=#frequently-asked-questions>FAQ</a> |
13
+ <a href=#usage>Usage</a> |
14
+ <a href="#evaluation">Evaluation</a> |
15
+ <a href="#train">Train</a> |
16
+ <a href="#contact">Contact</a> |
17
+ <a href="#citation">Citation</a> |
18
+ <a href="#license">License</a>
19
+ <p>
20
+ </h4>
21
+
22
+ More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
23
+
24
+
25
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
26
+
27
+ FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
28
+ And it also can be used in vector databases for LLMs.
29
+
30
+ ************* 🌟**Updates**🌟 *************
31
+ - 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP).
32
+ - 09/12/2023: New Release:
33
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
34
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
35
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
36
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
37
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
38
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
39
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
40
+
41
+
42
+ ## Model List
43
+
44
+ `bge` is short for `BAAI general embedding`.
45
+
46
+ | Model | Language | | Description | query instruction for retrieval\* |
47
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
48
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
49
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
50
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
51
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
52
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
53
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
54
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
55
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
56
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
57
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
58
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
59
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
60
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
61
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
62
+
63
+
64
+ \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
65
+
66
+ \**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
67
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
68
+
69
+ ## Frequently asked questions
70
+
71
+ <details>
72
+ <summary>1. How to fine-tune bge embedding model?</summary>
73
+
74
+ <!-- ### How to fine-tune bge embedding model? -->
75
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
76
+ Some suggestions:
77
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
78
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
79
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
80
+
81
+
82
+ </details>
83
+
84
+ <details>
85
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
86
+
87
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
88
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
89
+
90
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
91
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
92
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
93
+
94
+ For downstream tasks, such as passage retrieval or semantic similarity,
95
+ **what matters is the relative order of the scores, not the absolute value.**
96
+ If you need to filter similar sentences based on a similarity threshold,
97
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
98
+
99
+ </details>
100
+
101
+ <details>
102
+ <summary>3. When does the query instruction need to be used</summary>
103
+
104
+ <!-- ### When does the query instruction need to be used -->
105
+
106
+ For a retrieval task that uses short queries to find long related documents,
107
+ it is recommended to add instructions for these short queries.
108
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
109
+ In all cases, the documents/passages do not need to add the instruction.
110
+
111
+ </details>
112
+
113
+
114
+ ## Usage
115
+
116
+ ### Usage for Embedding Model
117
+
118
+ Here are some examples for using `bge` models with
119
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
120
+
121
+ #### Using FlagEmbedding
122
+ ```
123
+ pip install -U FlagEmbedding
124
+ ```
125
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
126
+
127
+ ```python
128
+ from FlagEmbedding import FlagModel
129
+ sentences_1 = ["样例数据-1", "样例数据-2"]
130
+ sentences_2 = ["样例数据-3", "样例数据-4"]
131
+ model = FlagModel('BAAI/bge-large-zh-v1.5',
132
+ query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
133
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
134
+ embeddings_1 = model.encode(sentences_1)
135
+ embeddings_2 = model.encode(sentences_2)
136
+ similarity = embeddings_1 @ embeddings_2.T
137
+ print(similarity)
138
+
139
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
140
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
141
+ queries = ['query_1', 'query_2']
142
+ passages = ["样例文档-1", "样例文档-2"]
143
+ q_embeddings = model.encode_queries(queries)
144
+ p_embeddings = model.encode(passages)
145
+ scores = q_embeddings @ p_embeddings.T
146
+ ```
147
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
148
+
149
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
150
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
151
+
152
+
153
+ #### Using Sentence-Transformers
154
+
155
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
156
+
157
+ ```
158
+ pip install -U sentence-transformers
159
+ ```
160
+ ```python
161
+ from sentence_transformers import SentenceTransformer
162
+ sentences_1 = ["样例数据-1", "样例数据-2"]
163
+ sentences_2 = ["样例数据-3", "样例数据-4"]
164
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
165
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
166
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
167
+ similarity = embeddings_1 @ embeddings_2.T
168
+ print(similarity)
169
+ ```
170
+ For s2p(short query to long passage) retrieval task,
171
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
172
+ But the instruction is not needed for passages.
173
+ ```python
174
+ from sentence_transformers import SentenceTransformer
175
+ queries = ['query_1', 'query_2']
176
+ passages = ["样例文档-1", "样例文档-2"]
177
+ instruction = "为这个句子生成表示以用于检索相关文章:"
178
+
179
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
180
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
181
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
182
+ scores = q_embeddings @ p_embeddings.T
183
+ ```
184
+
185
+ #### Using Langchain
186
+
187
+ You can use `bge` in langchain like this:
188
+ ```python
189
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
190
+ model_name = "BAAI/bge-large-en-v1.5"
191
+ model_kwargs = {'device': 'cuda'}
192
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
193
+ model = HuggingFaceBgeEmbeddings(
194
+ model_name=model_name,
195
+ model_kwargs=model_kwargs,
196
+ encode_kwargs=encode_kwargs,
197
+ query_instruction="为这个句子生成表示以用于检索相关文章:"
198
+ )
199
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
200
+ ```
201
+
202
+
203
+ #### Using HuggingFace Transformers
204
+
205
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
206
+
207
+ ```python
208
+ from transformers import AutoTokenizer, AutoModel
209
+ import torch
210
+ # Sentences we want sentence embeddings for
211
+ sentences = ["样例数据-1", "样例数据-2"]
212
+
213
+ # Load model from HuggingFace Hub
214
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
215
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
216
+ model.eval()
217
+
218
+ # Tokenize sentences
219
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
220
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
221
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
222
+
223
+ # Compute token embeddings
224
+ with torch.no_grad():
225
+ model_output = model(**encoded_input)
226
+ # Perform pooling. In this case, cls pooling.
227
+ sentence_embeddings = model_output[0][:, 0]
228
+ # normalize embeddings
229
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
230
+ print("Sentence embeddings:", sentence_embeddings)
231
+ ```
232
+
233
+ ### Usage for Reranker
234
+
235
+ Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
236
+ You can get a relevance score by inputting query and passage to the reranker.
237
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
238
+
239
+
240
+ #### Using FlagEmbedding
241
+ ```
242
+ pip install -U FlagEmbedding
243
+ ```
244
+
245
+ Get relevance scores (higher scores indicate more relevance):
246
+ ```python
247
+ from FlagEmbedding import FlagReranker
248
+ reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
249
+
250
+ score = reranker.compute_score(['query', 'passage'])
251
+ print(score)
252
+
253
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
254
+ print(scores)
255
+ ```
256
+
257
+
258
+ #### Using Huggingface transformers
259
+
260
+ ```python
261
+ import torch
262
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
263
+
264
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
265
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
266
+ model.eval()
267
+
268
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
269
+ with torch.no_grad():
270
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
271
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
272
+ print(scores)
273
+ ```
274
+
275
+ ## Evaluation
276
+
277
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
278
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
279
+
280
+ - **MTEB**:
281
+
282
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
283
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
284
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
285
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
286
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
287
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
288
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
289
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
290
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
291
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
292
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
293
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
294
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
295
+ | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
296
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
297
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
298
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
299
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
300
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
301
+
302
+
303
+
304
+ - **C-MTEB**:
305
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
306
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
307
+
308
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
309
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
310
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
311
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
312
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
313
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
314
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
315
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
316
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
317
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
318
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
319
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
320
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
321
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
322
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
323
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
324
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
325
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
326
+
327
+
328
+ - **Reranking**:
329
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
330
+
331
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
332
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
333
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
334
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
335
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
336
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
337
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
338
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
339
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
340
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
341
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
342
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
343
+
344
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
345
+
346
+ ## Train
347
+
348
+ ### BAAI Embedding
349
+
350
+ We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
351
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
352
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
353
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
354
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
355
+
356
+
357
+
358
+ ### BGE Reranker
359
+
360
+ Cross-encoder will perform full-attention over the input pair,
361
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
362
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
363
+ We train the cross-encoder on a multilingual pair data,
364
+ The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
365
+ More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
366
+
367
+
368
+ ## Contact
369
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
370
+ You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
371
+
372
+
373
+ ## Citation
374
+
375
+ If you find our work helpful, please cite us:
376
+ ```
377
+ @misc{bge_embedding,
378
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
379
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
380
+ year={2023},
381
+ eprint={2309.07597},
382
+ archivePrefix={arXiv},
383
+ primaryClass={cs.CL}
384
+ }
385
+ ```
386
+
387
+ ## License
388
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
389
+
390
+
391
+
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llm-embedder",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.30.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.0",
5
+ "pytorch": "2.0.1+cu117"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f76bef3211017583a582eed6e45c3ef331cc23cbe986d66aaad95b134ed6bfb
3
+ size 437997357
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "truncation_side": "right",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff