Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,41 @@
|
|
|
|
1 |
|
2 |
|
3 |
-
|
|
|
|
|
4 |
|
5 |
-
Map any text to a 1024-dimensional dense vector space and can be used for tasks like retrieval, classification, clustering, or semantic search.
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
12 |
|
@@ -19,51 +48,51 @@ Then you can use the model like this:
|
|
19 |
```python
|
20 |
from sentence_transformers import SentenceTransformer
|
21 |
sentences = ["样例数据-1", "样例数据-2"]
|
22 |
-
|
23 |
-
model = SentenceTransformer('Shitao/flag-text-embedding-chinese')
|
24 |
embeddings = model.encode(sentences, normalize_embeddings=True)
|
25 |
print(embeddings)
|
26 |
```
|
27 |
|
28 |
|
29 |
-
|
30 |
-
## Usage (HuggingFace Transformers)
|
31 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
32 |
|
33 |
```python
|
34 |
from transformers import AutoTokenizer, AutoModel
|
35 |
import torch
|
36 |
-
|
37 |
-
|
38 |
# Sentences we want sentence embeddings for
|
39 |
sentences = ["样例数据-1", "样例数据-2"]
|
40 |
-
|
41 |
# Load model from HuggingFace Hub
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
43 |
-
model = AutoModel.from_pretrained('
|
44 |
-
|
45 |
# Tokenize sentences
|
46 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
47 |
-
|
48 |
# Compute token embeddings
|
49 |
with torch.no_grad():
|
50 |
model_output = model(**encoded_input)
|
51 |
# Perform pooling. In this case, cls pooling.
|
52 |
sentence_embeddings = model_output[0][:, 0]
|
53 |
-
|
|
|
54 |
print("Sentence embeddings:")
|
55 |
print(sentence_embeddings)
|
56 |
```
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
##
|
61 |
-
|
62 |
-
For an automated evaluation of this model, see the *Chinese Embedding Benchmark*: [link]()
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
## Citing & Authors
|
68 |
|
69 |
-
<!--- Describe where people can find more information -->
|
|
|
1 |
+
# baai-general-embedding-large-zh-instruction
|
2 |
|
3 |
|
4 |
+
Map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
5 |
+
It also can be used in vector databases for LLMs.
|
6 |
+
For more details please refer to our GitHub: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
7 |
|
|
|
8 |
|
9 |
+
## Model List
|
10 |
+
| Model | Language | Description | query instruction for retrieval |
|
11 |
+
|:-------------------------------|:--------:| :--------:| :--------:|
|
12 |
+
| [BAAI/baai-general-embedding-large-en-instruction](https://huggingface.co/BAAI/baai-general-embedding-large-en-instruction) | English | rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
13 |
+
| [BAAI/baai-general-embedding-large-zh-instruction](https://huggingface.co/BAAI/baai-general-embedding-large-zh-instruction) | Chinese | rank **1st** in [C-MTEB]() bechmark | `为这个句子生成表示以用于检索相关文章:` |
|
14 |
+
| [BAAI/baai-general-embedding-large-zh](https://huggingface.co/BAAI/baai-general-embedding-large-zh) | Chinese | rank **2nd** in [C-MTEB]() bechmark | -- |
|
15 |
|
16 |
|
17 |
+
## Evaluation Results
|
18 |
+
|
19 |
+
- **C-MTEB**:
|
20 |
+
We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
21 |
+
More details and evaluation scripts see [evaluation](evaluation/README.md).
|
22 |
+
|
23 |
+
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
24 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
25 |
+
| [**baai-general-embedding-large-zh-instruction**](https://huggingface.co/BAAI/baai-general-embedding-large-zh-instruction) | 1024 | **63.84** | **71.53** | **53.23** | **78.94** | 72.26 | 62.33 | 48.39 |
|
26 |
+
| [baai-general-embedding-large-zh](https://huggingface.co/BAAI/baai-general-embedding-large-zh) | 1024 | 63.62 | 70.55 | 50.98 | 76.77 | **72.49** | **65.63** | **50.01** |
|
27 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
|
28 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
|
29 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
|
30 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
|
31 |
+
| [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
|
32 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
|
38 |
+
### Sentence-Transformers
|
39 |
|
40 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
41 |
|
|
|
48 |
```python
|
49 |
from sentence_transformers import SentenceTransformer
|
50 |
sentences = ["样例数据-1", "样例数据-2"]
|
51 |
+
model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
|
|
|
52 |
embeddings = model.encode(sentences, normalize_embeddings=True)
|
53 |
print(embeddings)
|
54 |
```
|
55 |
|
56 |
|
57 |
+
### HuggingFace Transformers
|
|
|
58 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
59 |
|
60 |
```python
|
61 |
from transformers import AutoTokenizer, AutoModel
|
62 |
import torch
|
|
|
|
|
63 |
# Sentences we want sentence embeddings for
|
64 |
sentences = ["样例数据-1", "样例数据-2"]
|
|
|
65 |
# Load model from HuggingFace Hub
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/baai-general-embedding-large-zh-instruction')
|
67 |
+
model = AutoModel.from_pretrained('BAAI/baai-general-embedding-large-zh-instruction')
|
|
|
68 |
# Tokenize sentences
|
69 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
70 |
# Compute token embeddings
|
71 |
with torch.no_grad():
|
72 |
model_output = model(**encoded_input)
|
73 |
# Perform pooling. In this case, cls pooling.
|
74 |
sentence_embeddings = model_output[0][:, 0]
|
75 |
+
# normalize embeddings
|
76 |
+
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
77 |
print("Sentence embeddings:")
|
78 |
print(sentence_embeddings)
|
79 |
```
|
80 |
|
81 |
|
82 |
+
### Retrieval Task
|
83 |
+
For retrieval task, when you use the model whose name ends with `-instruction`
|
84 |
+
each query should start with a instruction.
|
85 |
+
```python
|
86 |
+
from sentence_transformers import SentenceTransformer
|
87 |
+
queries = ["手机开不了机怎么办?"]
|
88 |
+
passages = ["样例段落-1", "样例段落-2"]
|
89 |
+
instruction = "为这个句子生成表示以用于检索相关文章:"
|
90 |
+
model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
|
91 |
+
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
92 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
93 |
+
scores = q_embeddings @ p_embeddings.T
|
94 |
+
```
|
95 |
|
96 |
+
## Limitations
|
97 |
+
This model only works for Chinese texts and long texts will be truncated to a maximum of 512 tokens.
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
|