Shitao commited on
Commit
f222971
·
verified ·
1 Parent(s): d3b4e36

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +958 -1751
README.md CHANGED
@@ -26,26 +26,9 @@ model-index:
26
  value: 93.1492537313433
27
  task:
28
  type: Classification
29
- - dataset:
30
- config: en
31
- name: MTEB AmazonCounterfactualClassification (en)
32
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
33
- split: validation
34
- type: mteb/amazon_counterfactual
35
- metrics:
36
- - type: accuracy
37
- value: 93.04477611940298
38
- - type: ap
39
- value: 68.51763006673485
40
- - type: f1
41
- value: 88.44832081571468
42
- - type: main_score
43
- value: 93.04477611940298
44
- task:
45
- type: Classification
46
  - dataset:
47
  config: default
48
- name: MTEB AmazonPolarityClassification (default)
49
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
50
  split: test
51
  type: mteb/amazon_polarity
@@ -76,23 +59,67 @@ model-index:
76
  task:
77
  type: Classification
78
  - dataset:
79
- config: en
80
- name: MTEB AmazonReviewsClassification (en)
81
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
82
- split: validation
83
- type: mteb/amazon_reviews_multi
84
  metrics:
85
- - type: accuracy
86
- value: 61.204
87
- - type: f1
88
- value: 60.262736729265384
89
  - type: main_score
90
- value: 61.204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  task:
92
- type: Classification
93
  - dataset:
94
  config: default
95
- name: MTEB ArxivClusteringP2P (default)
96
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
97
  split: test
98
  type: mteb/arxiv-clustering-p2p
@@ -107,7 +134,7 @@ model-index:
107
  type: Clustering
108
  - dataset:
109
  config: default
110
- name: MTEB ArxivClusteringS2S (default)
111
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
112
  split: test
113
  type: mteb/arxiv-clustering-s2s
@@ -122,7 +149,7 @@ model-index:
122
  type: Clustering
123
  - dataset:
124
  config: default
125
- name: MTEB AskUbuntuDupQuestions (default)
126
  revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
127
  split: test
128
  type: mteb/askubuntudupquestions-reranking
@@ -137,18 +164,22 @@ model-index:
137
  type: Reranking
138
  - dataset:
139
  config: default
140
- name: MTEB BIOSSES (default)
141
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
142
  split: test
143
  type: mteb/biosses-sts
144
  metrics:
145
  - type: main_score
146
  value: 86.47365710792691
 
 
 
 
147
  task:
148
  type: STS
149
  - dataset:
150
  config: default
151
- name: MTEB Banking77Classification (default)
152
  revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
153
  split: test
154
  type: mteb/banking77
@@ -163,7 +194,7 @@ model-index:
163
  type: Classification
164
  - dataset:
165
  config: default
166
- name: MTEB BiorxivClusteringP2P (default)
167
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
168
  split: test
169
  type: mteb/biorxiv-clustering-p2p
@@ -178,7 +209,7 @@ model-index:
178
  type: Clustering
179
  - dataset:
180
  config: default
181
- name: MTEB BiorxivClusteringS2S (default)
182
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
183
  split: test
184
  type: mteb/biorxiv-clustering-s2s
@@ -193,43 +224,382 @@ model-index:
193
  type: Clustering
194
  - dataset:
195
  config: default
196
- name: MTEB EmotionClassification (default)
197
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
198
  split: test
199
- type: mteb/emotion
200
  metrics:
201
- - type: accuracy
202
- value: 93.36
203
- - type: f1
204
- value: 89.73665936982262
205
  - type: main_score
206
- value: 93.36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
  task:
208
- type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  - dataset:
210
  config: default
211
- name: MTEB EmotionClassification (default)
212
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
213
- split: validation
214
  type: mteb/emotion
215
  metrics:
216
  - type: accuracy
217
- value: 94.14
218
  - type: f1
219
- value: 91.63163961443355
220
  - type: main_score
221
- value: 94.14
222
  task:
223
  type: Classification
224
  - dataset:
225
  config: default
226
- name: MTEB ImdbClassification (default)
227
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
228
  split: test
229
- type: mteb/imdb
230
  metrics:
231
- - type: accuracy
232
- value: 96.9144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
  - type: ap
234
  value: 95.45276911068486
235
  - type: f1
@@ -239,33 +609,77 @@ model-index:
239
  task:
240
  type: Classification
241
  - dataset:
242
- config: en
243
- name: MTEB MTOPDomainClassification (en)
244
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
245
- split: test
246
- type: mteb/mtop_domain
247
  metrics:
248
- - type: accuracy
249
- value: 98.42225262197901
250
- - type: f1
251
- value: 98.31652547061115
252
  - type: main_score
253
- value: 98.42225262197901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  task:
255
- type: Classification
256
  - dataset:
257
  config: en
258
  name: MTEB MTOPDomainClassification (en)
259
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
260
- split: validation
261
  type: mteb/mtop_domain
262
  metrics:
263
  - type: accuracy
264
- value: 98.60850111856824
265
  - type: f1
266
- value: 98.49625189176408
267
  - type: main_score
268
- value: 98.60850111856824
269
  task:
270
  type: Classification
271
  - dataset:
@@ -283,21 +697,6 @@ model-index:
283
  value: 94.00136798905609
284
  task:
285
  type: Classification
286
- - dataset:
287
- config: en
288
- name: MTEB MTOPIntentClassification (en)
289
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
290
- split: validation
291
- type: mteb/mtop_intent
292
- metrics:
293
- - type: accuracy
294
- value: 93.89261744966441
295
- - type: f1
296
- value: 78.76796618262529
297
- - type: main_score
298
- value: 93.89261744966441
299
- task:
300
- type: Classification
301
  - dataset:
302
  config: en
303
  name: MTEB MassiveIntentClassification (en)
@@ -313,21 +712,6 @@ model-index:
313
  value: 82.92535305985204
314
  task:
315
  type: Classification
316
- - dataset:
317
- config: en
318
- name: MTEB MassiveIntentClassification (en)
319
- revision: 4672e20407010da34463acc759c162ca9734bca6
320
- split: validation
321
- type: mteb/amazon_massive_intent
322
- metrics:
323
- - type: accuracy
324
- value: 83.55140186915888
325
- - type: f1
326
- value: 81.09072707555056
327
- - type: main_score
328
- value: 83.55140186915888
329
- task:
330
- type: Classification
331
  - dataset:
332
  config: en
333
  name: MTEB MassiveScenarioClassification (en)
@@ -343,24 +727,9 @@ model-index:
343
  value: 85.60188298587758
344
  task:
345
  type: Classification
346
- - dataset:
347
- config: en
348
- name: MTEB MassiveScenarioClassification (en)
349
- revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
350
- split: validation
351
- type: mteb/amazon_massive_scenario
352
- metrics:
353
- - type: accuracy
354
- value: 85.01721593703886
355
- - type: f1
356
- value: 84.05277245992066
357
- - type: main_score
358
- value: 85.01721593703886
359
- task:
360
- type: Classification
361
  - dataset:
362
  config: default
363
- name: MTEB MedrxivClusteringP2P (default)
364
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
365
  split: test
366
  type: mteb/medrxiv-clustering-p2p
@@ -375,7 +744,7 @@ model-index:
375
  type: Clustering
376
  - dataset:
377
  config: default
378
- name: MTEB MedrxivClusteringS2S (default)
379
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
380
  split: test
381
  type: mteb/medrxiv-clustering-s2s
@@ -390,7 +759,7 @@ model-index:
390
  type: Clustering
391
  - dataset:
392
  config: default
393
- name: MTEB MindSmallReranking (default)
394
  revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
395
  split: test
396
  type: mteb/mind_small
@@ -405,7 +774,184 @@ model-index:
405
  type: Reranking
406
  - dataset:
407
  config: default
408
- name: MTEB RedditClustering (default)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
410
  split: test
411
  type: mteb/reddit-clustering
@@ -420,7 +966,7 @@ model-index:
420
  type: Clustering
421
  - dataset:
422
  config: default
423
- name: MTEB RedditClusteringP2P (default)
424
  revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
425
  split: test
426
  type: mteb/reddit-clustering-p2p
@@ -435,68 +981,151 @@ model-index:
435
  type: Clustering
436
  - dataset:
437
  config: default
438
- name: MTEB SICK-R (default)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
  revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
440
  split: test
441
  type: mteb/sickr-sts
442
  metrics:
443
  - type: main_score
444
  value: 83.86733787791422
 
 
 
 
445
  task:
446
  type: STS
447
  - dataset:
448
  config: default
449
- name: MTEB STS12 (default)
450
  revision: a0d554a64d88156834ff5ae9920b964011b16384
451
  split: test
452
  type: mteb/sts12-sts
453
  metrics:
454
  - type: main_score
455
  value: 78.14269330480724
 
 
 
 
456
  task:
457
  type: STS
458
  - dataset:
459
  config: default
460
- name: MTEB STS13 (default)
461
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
462
  split: test
463
  type: mteb/sts13-sts
464
  metrics:
465
  - type: main_score
466
  value: 86.58640009300751
 
 
 
 
467
  task:
468
  type: STS
469
  - dataset:
470
  config: default
471
- name: MTEB STS14 (default)
472
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
473
  split: test
474
  type: mteb/sts14-sts
475
  metrics:
476
  - type: main_score
477
  value: 82.8292579957437
 
 
 
 
478
  task:
479
  type: STS
480
  - dataset:
481
  config: default
482
- name: MTEB STS15 (default)
483
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
484
  split: test
485
  type: mteb/sts15-sts
486
  metrics:
487
  - type: main_score
488
  value: 87.77203714228862
489
- task:
 
 
 
 
490
  type: STS
491
  - dataset:
492
  config: default
493
- name: MTEB STS16 (default)
494
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
495
  split: test
496
  type: mteb/sts16-sts
497
  metrics:
498
  - type: main_score
499
  value: 87.0439304006969
 
 
 
 
500
  task:
501
  type: STS
502
  - dataset:
@@ -508,6 +1137,10 @@ model-index:
508
  metrics:
509
  - type: main_score
510
  value: 91.24736138013424
 
 
 
 
511
  task:
512
  type: STS
513
  - dataset:
@@ -519,22 +1152,30 @@ model-index:
519
  metrics:
520
  - type: main_score
521
  value: 70.07326214706
 
 
 
 
522
  task:
523
  type: STS
524
  - dataset:
525
  config: default
526
- name: MTEB STSBenchmark (default)
527
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
528
  split: test
529
  type: mteb/stsbenchmark-sts
530
  metrics:
531
  - type: main_score
532
  value: 88.42076443255168
 
 
 
 
533
  task:
534
  type: STS
535
  - dataset:
536
  config: default
537
- name: MTEB SciDocsRR (default)
538
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
539
  split: test
540
  type: mteb/scidocs-reranking
@@ -549,7 +1190,66 @@ model-index:
549
  type: Reranking
550
  - dataset:
551
  config: default
552
- name: MTEB SprintDuplicateQuestions (default)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
554
  split: test
555
  type: mteb/sprintduplicatequestions-pairclassification
@@ -622,80 +1322,7 @@ model-index:
622
  type: PairClassification
623
  - dataset:
624
  config: default
625
- name: MTEB SprintDuplicateQuestions (default)
626
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
627
- split: validation
628
- type: mteb/sprintduplicatequestions-pairclassification
629
- metrics:
630
- - type: main_score
631
- value: 98.02470052972619
632
- - type: cos_sim_accuracy
633
- value: 99.88811881188118
634
- - type: cos_sim_accuracy_threshold
635
- value: 75.25776028633118
636
- - type: cos_sim_ap
637
- value: 97.97198133050095
638
- - type: cos_sim_f1
639
- value: 94.37531110004977
640
- - type: cos_sim_f1_threshold
641
- value: 75.25776028633118
642
- - type: cos_sim_precision
643
- value: 93.95441030723488
644
- - type: cos_sim_recall
645
- value: 94.8
646
- - type: dot_accuracy
647
- value: 99.88811881188118
648
- - type: dot_accuracy_threshold
649
- value: 75.25776624679565
650
- - type: dot_ap
651
- value: 97.97198133050095
652
- - type: dot_f1
653
- value: 94.37531110004977
654
- - type: dot_f1_threshold
655
- value: 75.25776624679565
656
- - type: dot_precision
657
- value: 93.95441030723488
658
- - type: dot_recall
659
- value: 94.8
660
- - type: euclidean_accuracy
661
- value: 99.88811881188118
662
- - type: euclidean_accuracy_threshold
663
- value: 70.34507989883423
664
- - type: euclidean_ap
665
- value: 97.97198133050095
666
- - type: euclidean_f1
667
- value: 94.37531110004977
668
- - type: euclidean_f1_threshold
669
- value: 70.34507989883423
670
- - type: euclidean_precision
671
- value: 93.95441030723488
672
- - type: euclidean_recall
673
- value: 94.8
674
- - type: manhattan_accuracy
675
- value: 99.89207920792079
676
- - type: manhattan_accuracy_threshold
677
- value: 3481.599807739258
678
- - type: manhattan_ap
679
- value: 98.02470052972619
680
- - type: manhattan_f1
681
- value: 94.52536413862381
682
- - type: manhattan_f1_threshold
683
- value: 3481.599807739258
684
- - type: manhattan_precision
685
- value: 94.95459132189707
686
- - type: manhattan_recall
687
- value: 94.1
688
- - type: max_accuracy
689
- value: 99.89207920792079
690
- - type: max_ap
691
- value: 98.02470052972619
692
- - type: max_f1
693
- value: 94.52536413862381
694
- task:
695
- type: PairClassification
696
- - dataset:
697
- config: default
698
- name: MTEB StackExchangeClustering (default)
699
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
700
  split: test
701
  type: mteb/stackexchange-clustering
@@ -710,7 +1337,7 @@ model-index:
710
  type: Clustering
711
  - dataset:
712
  config: default
713
- name: MTEB StackExchangeClusteringP2P (default)
714
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
715
  split: test
716
  type: mteb/stackexchange-clustering-p2p
@@ -725,7 +1352,7 @@ model-index:
725
  type: Clustering
726
  - dataset:
727
  config: default
728
- name: MTEB StackOverflowDupQuestions (default)
729
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
730
  split: test
731
  type: mteb/stackoverflowdupquestions-reranking
@@ -740,7 +1367,7 @@ model-index:
740
  type: Reranking
741
  - dataset:
742
  config: default
743
- name: MTEB SummEval (default)
744
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
745
  split: test
746
  type: mteb/summeval
@@ -751,7 +1378,125 @@ model-index:
751
  type: Summarization
752
  - dataset:
753
  config: default
754
- name: MTEB ToxicConversationsClassification (default)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755
  revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
756
  split: test
757
  type: mteb/toxic_conversations_50k
@@ -768,7 +1513,7 @@ model-index:
768
  type: Classification
769
  - dataset:
770
  config: default
771
- name: MTEB TweetSentimentExtractionClassification (default)
772
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
773
  split: test
774
  type: mteb/tweet_sentiment_extraction
@@ -783,7 +1528,7 @@ model-index:
783
  type: Classification
784
  - dataset:
785
  config: default
786
- name: MTEB TwentyNewsgroupsClustering (default)
787
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
788
  split: test
789
  type: mteb/twentynewsgroups-clustering
@@ -798,7 +1543,7 @@ model-index:
798
  type: Clustering
799
  - dataset:
800
  config: default
801
- name: MTEB TwitterSemEval2015 (default)
802
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
803
  split: test
804
  type: mteb/twittersemeval2015-pairclassification
@@ -871,7 +1616,7 @@ model-index:
871
  type: PairClassification
872
  - dataset:
873
  config: default
874
- name: MTEB TwitterURLCorpus (default)
875
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
876
  split: test
877
  type: mteb/twitterurlcorpus-pairclassification
@@ -942,1545 +1687,6 @@ model-index:
942
  value: 80.27105660516332
943
  task:
944
  type: PairClassification
945
- - task:
946
- type: Retrieval
947
- dataset:
948
- type: nfcorpus
949
- name: MTEB NFCorpus
950
- config: default
951
- split: test
952
- revision: None
953
- metrics:
954
- - type: ndcg_at_1
955
- value: 52.47678018575851
956
- - type: ndcg_at_3
957
- value: 47.43993801247414
958
- - type: ndcg_at_5
959
- value: 45.08173173082719
960
- - type: ndcg_at_10
961
- value: 41.850870119787835
962
- - type: ndcg_at_100
963
- value: 37.79284946590978
964
- - type: ndcg_at_1000
965
- value: 46.58046062123418
966
- - type: map_at_1
967
- value: 6.892464464226138
968
- - type: map_at_3
969
- value: 12.113195798233127
970
- - type: map_at_5
971
- value: 13.968475602788812
972
- - type: map_at_10
973
- value: 16.47564069781326
974
- - type: map_at_100
975
- value: 20.671726065190025
976
- - type: map_at_1000
977
- value: 22.328875914012006
978
- - type: precision_at_1
979
- value: 53.86996904024768
980
- - type: precision_at_3
981
- value: 43.96284829721363
982
- - type: precision_at_5
983
- value: 38.69969040247682
984
- - type: precision_at_10
985
- value: 30.928792569659457
986
- - type: precision_at_100
987
- value: 9.507739938080498
988
- - type: precision_at_1000
989
- value: 2.25882352941176
990
- - type: recall_at_1
991
- value: 6.892464464226138
992
- - type: recall_at_3
993
- value: 13.708153358278407
994
- - type: recall_at_5
995
- value: 16.651919797359145
996
- - type: recall_at_10
997
- value: 21.01801714352559
998
- - type: recall_at_100
999
- value: 37.01672102843443
1000
- - type: recall_at_1000
1001
- value: 69.8307270724072
1002
- - task:
1003
- type: Retrieval
1004
- dataset:
1005
- type: msmarco
1006
- name: MTEB MSMARCO
1007
- config: default
1008
- split: dev
1009
- revision: None
1010
- metrics:
1011
- - type: ndcg_at_1
1012
- value: 26.63323782234957
1013
- - type: ndcg_at_3
1014
- value: 38.497585804985754
1015
- - type: ndcg_at_5
1016
- value: 42.72761631631636
1017
- - type: ndcg_at_10
1018
- value: 46.78865753107054
1019
- - type: ndcg_at_100
1020
- value: 51.96170786623209
1021
- - type: ndcg_at_1000
1022
- value: 52.82713901970963
1023
- - type: map_at_1
1024
- value: 25.89063992359121
1025
- - type: map_at_3
1026
- value: 35.299466730340654
1027
- - type: map_at_5
1028
- value: 37.68771887933786
1029
- - type: map_at_10
1030
- value: 39.40908074468253
1031
- - type: map_at_100
1032
- value: 40.53444082323405
1033
- - type: map_at_1000
1034
- value: 40.57183037649452
1035
- - type: precision_at_1
1036
- value: 26.63323782234957
1037
- - type: precision_at_3
1038
- value: 16.265520534861793
1039
- - type: precision_at_5
1040
- value: 11.902578796562304
1041
- - type: precision_at_10
1042
- value: 7.262177650430416
1043
- - type: precision_at_100
1044
- value: 0.9819484240687512
1045
- - type: precision_at_1000
1046
- value: 0.10571633237823287
1047
- - type: recall_at_1
1048
- value: 25.89063992359121
1049
- - type: recall_at_3
1050
- value: 46.99737344794652
1051
- - type: recall_at_5
1052
- value: 57.160936007640906
1053
- - type: recall_at_10
1054
- value: 69.43409742120343
1055
- - type: recall_at_100
1056
- value: 92.86413562559697
1057
- - type: recall_at_1000
1058
- value: 99.3230659025788
1059
- - task:
1060
- type: Retrieval
1061
- dataset:
1062
- type: fiqa
1063
- name: MTEB FiQA2018
1064
- config: default
1065
- split: test
1066
- revision: None
1067
- metrics:
1068
- - type: ndcg_at_1
1069
- value: 57.407407407407405
1070
- - type: ndcg_at_3
1071
- value: 53.79975378289304
1072
- - type: ndcg_at_5
1073
- value: 56.453379423655406
1074
- - type: ndcg_at_10
1075
- value: 59.67151242793314
1076
- - type: ndcg_at_100
1077
- value: 65.34055762539253
1078
- - type: ndcg_at_1000
1079
- value: 67.07707746043032
1080
- - type: map_at_1
1081
- value: 30.65887045053714
1082
- - type: map_at_3
1083
- value: 44.09107110881799
1084
- - type: map_at_5
1085
- value: 48.18573748068346
1086
- - type: map_at_10
1087
- value: 51.03680979612876
1088
- - type: map_at_100
1089
- value: 53.03165194566928
1090
- - type: map_at_1000
1091
- value: 53.16191096190861
1092
- - type: precision_at_1
1093
- value: 57.407407407407405
1094
- - type: precision_at_3
1095
- value: 35.493827160493886
1096
- - type: precision_at_5
1097
- value: 26.913580246913547
1098
- - type: precision_at_10
1099
- value: 16.435185185185155
1100
- - type: precision_at_100
1101
- value: 2.2685185185184986
1102
- - type: precision_at_1000
1103
- value: 0.25864197530863964
1104
- - type: recall_at_1
1105
- value: 30.65887045053714
1106
- - type: recall_at_3
1107
- value: 48.936723427464194
1108
- - type: recall_at_5
1109
- value: 58.55942925387371
1110
- - type: recall_at_10
1111
- value: 68.45128551147073
1112
- - type: recall_at_100
1113
- value: 88.24599311867836
1114
- - type: recall_at_1000
1115
- value: 98.18121693121691
1116
- - task:
1117
- type: Retrieval
1118
- dataset:
1119
- type: scidocs
1120
- name: MTEB SCIDOCS
1121
- config: default
1122
- split: test
1123
- revision: None
1124
- metrics:
1125
- - type: ndcg_at_1
1126
- value: 28.7
1127
- - type: ndcg_at_3
1128
- value: 23.61736427940938
1129
- - type: ndcg_at_5
1130
- value: 20.845690325673885
1131
- - type: ndcg_at_10
1132
- value: 25.25865384510787
1133
- - type: ndcg_at_100
1134
- value: 36.18596641088721
1135
- - type: ndcg_at_1000
1136
- value: 41.7166868935345
1137
- - type: map_at_1
1138
- value: 5.828333333333361
1139
- - type: map_at_3
1140
- value: 10.689166666666676
1141
- - type: map_at_5
1142
- value: 13.069916666666668
1143
- - type: map_at_10
1144
- value: 15.4901164021164
1145
- - type: map_at_100
1146
- value: 18.61493245565425
1147
- - type: map_at_1000
1148
- value: 18.99943478016456
1149
- - type: precision_at_1
1150
- value: 28.7
1151
- - type: precision_at_3
1152
- value: 22.30000000000006
1153
- - type: precision_at_5
1154
- value: 18.55999999999997
1155
- - type: precision_at_10
1156
- value: 13.289999999999946
1157
- - type: precision_at_100
1158
- value: 2.905000000000005
1159
- - type: precision_at_1000
1160
- value: 0.4218999999999946
1161
- - type: recall_at_1
1162
- value: 5.828333333333361
1163
- - type: recall_at_3
1164
- value: 13.548333333333387
1165
- - type: recall_at_5
1166
- value: 18.778333333333308
1167
- - type: recall_at_10
1168
- value: 26.939999999999902
1169
- - type: recall_at_100
1170
- value: 58.91333333333344
1171
- - type: recall_at_1000
1172
- value: 85.57499999999972
1173
- - task:
1174
- type: Retrieval
1175
- dataset:
1176
- type: fever
1177
- name: MTEB FEVER
1178
- config: defaultcqa
1179
- split: test
1180
- revision: None
1181
- metrics:
1182
- - type: ndcg_at_1
1183
- value: 88.98889888988899
1184
- - type: ndcg_at_3
1185
- value: 91.82404417747676
1186
- - type: ndcg_at_5
1187
- value: 92.41785792357787
1188
- - type: ndcg_at_10
1189
- value: 92.82809814626805
1190
- - type: ndcg_at_100
1191
- value: 93.31730867509245
1192
- - type: ndcg_at_1000
1193
- value: 93.45171203408582
1194
- - type: map_at_1
1195
- value: 82.64125817343636
1196
- - type: map_at_3
1197
- value: 89.39970782792554
1198
- - type: map_at_5
1199
- value: 89.96799501378695
1200
- - type: map_at_10
1201
- value: 90.27479706587437
1202
- - type: map_at_100
1203
- value: 90.45185655778057
1204
- - type: map_at_1000
1205
- value: 90.46130471574544
1206
- - type: precision_at_1
1207
- value: 88.98889888988899
1208
- - type: precision_at_3
1209
- value: 34.923492349234245
1210
- - type: precision_at_5
1211
- value: 21.524152415244043
1212
- - type: precision_at_10
1213
- value: 11.033603360337315
1214
- - type: precision_at_100
1215
- value: 1.1521152115211895
1216
- - type: precision_at_1000
1217
- value: 0.11765676567657675
1218
- - type: recall_at_1
1219
- value: 82.64125817343636
1220
- - type: recall_at_3
1221
- value: 94.35195900542428
1222
- - type: recall_at_5
1223
- value: 95.9071323799047
1224
- - type: recall_at_10
1225
- value: 97.04234113887586
1226
- - type: recall_at_100
1227
- value: 98.77282371094255
1228
- - type: recall_at_1000
1229
- value: 99.5555567461508
1230
- - task:
1231
- type: Retrieval
1232
- dataset:
1233
- type: arguana
1234
- name: MTEB ArguAna
1235
- config: default
1236
- split: test
1237
- revision: None
1238
- metrics:
1239
- - type: ndcg_at_1
1240
- value: 66.50071123755335
1241
- - type: ndcg_at_3
1242
- value: 80.10869593172173
1243
- - type: ndcg_at_5
1244
- value: 81.89670542467924
1245
- - type: ndcg_at_10
1246
- value: 83.07967801208441
1247
- - type: ndcg_at_100
1248
- value: 83.5991349601075
1249
- - type: ndcg_at_1000
1250
- value: 83.5991349601075
1251
- - type: map_at_1
1252
- value: 66.50071123755335
1253
- - type: map_at_3
1254
- value: 76.83736367946898
1255
- - type: map_at_5
1256
- value: 77.8473210052158
1257
- - type: map_at_10
1258
- value: 78.35472690735851
1259
- - type: map_at_100
1260
- value: 78.47388207611678
1261
- - type: map_at_1000
1262
- value: 78.47388207611678
1263
- - type: precision_at_1
1264
- value: 66.50071123755335
1265
- - type: precision_at_3
1266
- value: 29.848269321953076
1267
- - type: precision_at_5
1268
- value: 18.762446657183045
1269
- - type: precision_at_10
1270
- value: 9.736842105262909
1271
- - type: precision_at_100
1272
- value: 0.9964438122332677
1273
- - type: precision_at_1000
1274
- value: 0.09964438122332549
1275
- - type: recall_at_1
1276
- value: 66.50071123755335
1277
- - type: recall_at_3
1278
- value: 89.5448079658606
1279
- - type: recall_at_5
1280
- value: 93.8122332859175
1281
- - type: recall_at_10
1282
- value: 97.36842105263158
1283
- - type: recall_at_100
1284
- value: 99.6443812233286
1285
- - type: recall_at_1000
1286
- value: 99.6443812233286
1287
- - task:
1288
- type: Retrieval
1289
- dataset:
1290
- type: scifact
1291
- name: MTEB SciFact
1292
- config: default
1293
- split: test
1294
- revision: None
1295
- metrics:
1296
- - type: ndcg_at_1
1297
- value: 66.0
1298
- - type: ndcg_at_3
1299
- value: 74.98853481223065
1300
- - type: ndcg_at_5
1301
- value: 77.29382051205019
1302
- - type: ndcg_at_10
1303
- value: 79.09159079425369
1304
- - type: ndcg_at_100
1305
- value: 80.29692802526776
1306
- - type: ndcg_at_1000
1307
- value: 80.55210036585547
1308
- - type: map_at_1
1309
- value: 62.994444444444454
1310
- - type: map_at_3
1311
- value: 71.7425925925926
1312
- - type: map_at_5
1313
- value: 73.6200925925926
1314
- - type: map_at_10
1315
- value: 74.50223544973547
1316
- - type: map_at_100
1317
- value: 74.82438594015447
1318
- - type: map_at_1000
1319
- value: 74.83420474892468
1320
- - type: precision_at_1
1321
- value: 66.0
1322
- - type: precision_at_3
1323
- value: 29.44444444444439
1324
- - type: precision_at_5
1325
- value: 19.40000000000008
1326
- - type: precision_at_10
1327
- value: 10.366666666666715
1328
- - type: precision_at_100
1329
- value: 1.0999999999999928
1330
- - type: precision_at_1000
1331
- value: 0.11200000000000007
1332
- - type: recall_at_1
1333
- value: 62.994444444444454
1334
- - type: recall_at_3
1335
- value: 80.89999999999998
1336
- - type: recall_at_5
1337
- value: 86.72777777777779
1338
- - type: recall_at_10
1339
- value: 91.88888888888887
1340
- - type: recall_at_100
1341
- value: 97.0
1342
- - type: recall_at_1000
1343
- value: 99.0
1344
- - task:
1345
- type: Retrieval
1346
- dataset:
1347
- type: trec-covid
1348
- name: MTEB TRECCOVID
1349
- config: default
1350
- split: test
1351
- revision: None
1352
- metrics:
1353
- - type: ndcg_at_1
1354
- value: 83.0
1355
- - type: ndcg_at_3
1356
- value: 79.86598407528447
1357
- - type: ndcg_at_5
1358
- value: 79.27684428714952
1359
- - type: ndcg_at_10
1360
- value: 79.07987651251462
1361
- - type: ndcg_at_100
1362
- value: 64.55029164391163
1363
- - type: ndcg_at_1000
1364
- value: 59.42333857860492
1365
- - type: map_at_1
1366
- value: 0.226053732680979
1367
- - type: map_at_3
1368
- value: 0.644034626013194
1369
- - type: map_at_5
1370
- value: 1.045196967937728
1371
- - type: map_at_10
1372
- value: 2.0197496659905085
1373
- - type: map_at_100
1374
- value: 13.316018005224159
1375
- - type: map_at_1000
1376
- value: 33.784766957424104
1377
- - type: precision_at_1
1378
- value: 88.0
1379
- - type: precision_at_3
1380
- value: 86.66666666666667
1381
- - type: precision_at_5
1382
- value: 85.20000000000002
1383
- - type: precision_at_10
1384
- value: 84.19999999999997
1385
- - type: precision_at_100
1386
- value: 67.88000000000001
1387
- - type: precision_at_1000
1388
- value: 26.573999999999998
1389
- - type: recall_at_1
1390
- value: 0.226053732680979
1391
- - type: recall_at_3
1392
- value: 0.6754273711472734
1393
- - type: recall_at_5
1394
- value: 1.1168649828059245
1395
- - type: recall_at_10
1396
- value: 2.2215081031265207
1397
- - type: recall_at_100
1398
- value: 16.694165236664727
1399
- - type: recall_at_1000
1400
- value: 56.7022214857503
1401
- - task:
1402
- type: Retrieval
1403
- dataset:
1404
- type: climate-fever
1405
- name: MTEB ClimateFEVER
1406
- config: default
1407
- split: test
1408
- revision: None
1409
- metrics:
1410
- - type: ndcg_at_1
1411
- value: 44.36482084690554
1412
- - type: ndcg_at_3
1413
- value: 38.13005747178844
1414
- - type: ndcg_at_5
1415
- value: 40.83474510717123
1416
- - type: ndcg_at_10
1417
- value: 45.4272998284769
1418
- - type: ndcg_at_100
1419
- value: 52.880220707479516
1420
- - type: ndcg_at_1000
1421
- value: 55.364753427333
1422
- - type: map_at_1
1423
- value: 19.200868621064064
1424
- - type: map_at_3
1425
- value: 28.33785740137525
1426
- - type: map_at_5
1427
- value: 31.67162504524064
1428
- - type: map_at_10
1429
- value: 34.417673164090075
1430
- - type: map_at_100
1431
- value: 36.744753097028976
1432
- - type: map_at_1000
1433
- value: 36.91262189016135
1434
- - type: precision_at_1
1435
- value: 44.36482084690554
1436
- - type: precision_at_3
1437
- value: 29.14223669923975
1438
- - type: precision_at_5
1439
- value: 22.410423452768388
1440
- - type: precision_at_10
1441
- value: 14.293159609120309
1442
- - type: precision_at_100
1443
- value: 2.248859934853431
1444
- - type: precision_at_1000
1445
- value: 0.2722475570032542
1446
- - type: recall_at_1
1447
- value: 19.200868621064064
1448
- - type: recall_at_3
1449
- value: 34.132464712269176
1450
- - type: recall_at_5
1451
- value: 42.35613463626491
1452
- - type: recall_at_10
1453
- value: 52.50814332247546
1454
- - type: recall_at_100
1455
- value: 77.16178067318128
1456
- - type: recall_at_1000
1457
- value: 90.59174809989138
1458
- - task:
1459
- type: Retrieval
1460
- dataset:
1461
- type: hotpotqa
1462
- name: MTEB HotpotQA
1463
- config: default
1464
- split: test
1465
- revision: None
1466
- metrics:
1467
- - type: ndcg_at_1
1468
- value: 89.9392302498312
1469
- - type: ndcg_at_3
1470
- value: 81.2061569376288
1471
- - type: ndcg_at_5
1472
- value: 83.53311592078133
1473
- - type: ndcg_at_10
1474
- value: 85.13780800141961
1475
- - type: ndcg_at_100
1476
- value: 87.02630661625386
1477
- - type: ndcg_at_1000
1478
- value: 87.47294723601075
1479
- - type: map_at_1
1480
- value: 44.9696151249156
1481
- - type: map_at_3
1482
- value: 76.46972766148966
1483
- - type: map_at_5
1484
- value: 78.47749268512187
1485
- - type: map_at_10
1486
- value: 79.49792611170005
1487
- - type: map_at_100
1488
- value: 80.09409086274644
1489
- - type: map_at_1000
1490
- value: 80.11950878917663
1491
- - type: precision_at_1
1492
- value: 89.9392302498312
1493
- - type: precision_at_3
1494
- value: 53.261309925724234
1495
- - type: precision_at_5
1496
- value: 33.79338284942924
1497
- - type: precision_at_10
1498
- value: 17.69750168805041
1499
- - type: precision_at_100
1500
- value: 1.9141120864280805
1501
- - type: precision_at_1000
1502
- value: 0.19721809588118133
1503
- - type: recall_at_1
1504
- value: 44.9696151249156
1505
- - type: recall_at_3
1506
- value: 79.8919648885888
1507
- - type: recall_at_5
1508
- value: 84.48345712356516
1509
- - type: recall_at_10
1510
- value: 88.48750844024308
1511
- - type: recall_at_100
1512
- value: 95.70560432140446
1513
- - type: recall_at_1000
1514
- value: 98.60904794058068
1515
- - task:
1516
- type: Retrieval
1517
- dataset:
1518
- type: nq
1519
- name: MTEB NQ
1520
- config: default
1521
- split: test
1522
- revision: None
1523
- metrics:
1524
- - type: ndcg_at_1
1525
- value: 57.0683661645423
1526
- - type: ndcg_at_3
1527
- value: 67.89935813080585
1528
- - type: ndcg_at_5
1529
- value: 71.47769719452941
1530
- - type: ndcg_at_10
1531
- value: 73.88350836507092
1532
- - type: ndcg_at_100
1533
- value: 75.76561068060907
1534
- - type: ndcg_at_1000
1535
- value: 75.92437662684215
1536
- - type: map_at_1
1537
- value: 51.00424874468904
1538
- - type: map_at_3
1539
- value: 63.87359984550011
1540
- - type: map_at_5
1541
- value: 66.23696407879494
1542
- - type: map_at_10
1543
- value: 67.42415446608673
1544
- - type: map_at_100
1545
- value: 67.92692839842621
1546
- - type: map_at_1000
1547
- value: 67.93437922640133
1548
- - type: precision_at_1
1549
- value: 57.0683661645423
1550
- - type: precision_at_3
1551
- value: 29.692931633836416
1552
- - type: precision_at_5
1553
- value: 20.046349942062854
1554
- - type: precision_at_10
1555
- value: 10.950173812283
1556
- - type: precision_at_100
1557
- value: 1.1995944380069687
1558
- - type: precision_at_1000
1559
- value: 0.12146581691772171
1560
- - type: recall_at_1
1561
- value: 51.00424874468904
1562
- - type: recall_at_3
1563
- value: 75.93665507918116
1564
- - type: recall_at_5
1565
- value: 83.95133256083433
1566
- - type: recall_at_10
1567
- value: 90.78794901506375
1568
- - type: recall_at_100
1569
- value: 98.61915797605253
1570
- - type: recall_at_1000
1571
- value: 99.7827346465817
1572
- - task:
1573
- type: Retrieval
1574
- dataset:
1575
- type: quora
1576
- name: MTEB QuoraRetrieval
1577
- config: default
1578
- split: test
1579
- revision: None
1580
- metrics:
1581
- - type: ndcg_at_1
1582
- value: 84.61999999999999
1583
- - type: ndcg_at_3
1584
- value: 88.57366734033212
1585
- - type: ndcg_at_5
1586
- value: 89.89804048972175
1587
- - type: ndcg_at_10
1588
- value: 90.95410848372035
1589
- - type: ndcg_at_100
1590
- value: 91.83227134455773
1591
- - type: ndcg_at_1000
1592
- value: 91.88368412611601
1593
- - type: map_at_1
1594
- value: 73.4670089207039
1595
- - type: map_at_3
1596
- value: 84.87862925508942
1597
- - type: map_at_5
1598
- value: 86.68002324701408
1599
- - type: map_at_10
1600
- value: 87.7165466015312
1601
- - type: map_at_100
1602
- value: 88.28718809614146
1603
- - type: map_at_1000
1604
- value: 88.29877148480672
1605
- - type: precision_at_1
1606
- value: 84.61999999999999
1607
- - type: precision_at_3
1608
- value: 38.82333333333838
1609
- - type: precision_at_5
1610
- value: 25.423999999998642
1611
- - type: precision_at_10
1612
- value: 13.787999999998583
1613
- - type: precision_at_100
1614
- value: 1.5442999999999767
1615
- - type: precision_at_1000
1616
- value: 0.15672999999997972
1617
- - type: recall_at_1
1618
- value: 73.4670089207039
1619
- - type: recall_at_3
1620
- value: 89.98389854832143
1621
- - type: recall_at_5
1622
- value: 93.88541046010576
1623
- - type: recall_at_10
1624
- value: 96.99779417520634
1625
- - type: recall_at_100
1626
- value: 99.80318763957743
1627
- - type: recall_at_1000
1628
- value: 99.99638888888889
1629
- - task:
1630
- type: Retrieval
1631
- dataset:
1632
- type: webis-touche2020
1633
- name: MTEB Touche2020
1634
- config: default
1635
- split: test
1636
- revision: None
1637
- metrics:
1638
- - type: ndcg_at_1
1639
- value: 33.6734693877551
1640
- - type: ndcg_at_3
1641
- value: 34.36843900446739
1642
- - type: ndcg_at_5
1643
- value: 32.21323786731918
1644
- - type: ndcg_at_10
1645
- value: 30.47934263207554
1646
- - type: ndcg_at_100
1647
- value: 41.49598869753928
1648
- - type: ndcg_at_1000
1649
- value: 52.32963949183662
1650
- - type: map_at_1
1651
- value: 3.0159801678718168
1652
- - type: map_at_3
1653
- value: 7.13837927642557
1654
- - type: map_at_5
1655
- value: 9.274004610363466
1656
- - type: map_at_10
1657
- value: 12.957368366814324
1658
- - type: map_at_100
1659
- value: 19.3070585127604
1660
- - type: map_at_1000
1661
- value: 20.809777161133532
1662
- - type: precision_at_1
1663
- value: 34.69387755102041
1664
- - type: precision_at_3
1665
- value: 36.054421768707485
1666
- - type: precision_at_5
1667
- value: 32.24489795918368
1668
- - type: precision_at_10
1669
- value: 27.142857142857146
1670
- - type: precision_at_100
1671
- value: 8.326530612244898
1672
- - type: precision_at_1000
1673
- value: 1.5755102040816336
1674
- - type: recall_at_1
1675
- value: 3.0159801678718168
1676
- - type: recall_at_3
1677
- value: 8.321771388428257
1678
- - type: recall_at_5
1679
- value: 11.737532394366069
1680
- - type: recall_at_10
1681
- value: 19.49315139822179
1682
- - type: recall_at_100
1683
- value: 50.937064145519685
1684
- - type: recall_at_1000
1685
- value: 83.4358283484675
1686
- - task:
1687
- type: Retrieval
1688
- dataset:
1689
- type: dbpedia-entity
1690
- name: MTEB DBPedia
1691
- config: default
1692
- split: test
1693
- revision: None
1694
- metrics:
1695
- - type: ndcg_at_1
1696
- value: 64.375
1697
- - type: ndcg_at_3
1698
- value: 55.677549598242614
1699
- - type: ndcg_at_5
1700
- value: 53.44347199908503
1701
- - type: ndcg_at_10
1702
- value: 51.634197691802754
1703
- - type: ndcg_at_100
1704
- value: 56.202861267183415
1705
- - type: ndcg_at_1000
1706
- value: 63.146019108272576
1707
- - type: map_at_1
1708
- value: 9.789380503780919
1709
- - type: map_at_3
1710
- value: 16.146582195277016
1711
- - type: map_at_5
1712
- value: 19.469695222167193
1713
- - type: map_at_10
1714
- value: 24.163327344766145
1715
- - type: map_at_100
1716
- value: 35.47047690245571
1717
- - type: map_at_1000
1718
- value: 37.5147432331838
1719
- - type: precision_at_1
1720
- value: 76.25
1721
- - type: precision_at_3
1722
- value: 59.08333333333333
1723
- - type: precision_at_5
1724
- value: 52.24999999999997
1725
- - type: precision_at_10
1726
- value: 42.54999999999994
1727
- - type: precision_at_100
1728
- value: 13.460000000000008
1729
- - type: precision_at_1000
1730
- value: 2.4804999999999966
1731
- - type: recall_at_1
1732
- value: 9.789380503780919
1733
- - type: recall_at_3
1734
- value: 17.48487134027656
1735
- - type: recall_at_5
1736
- value: 22.312024269698806
1737
- - type: recall_at_10
1738
- value: 30.305380335237324
1739
- - type: recall_at_100
1740
- value: 62.172868946596424
1741
- - type: recall_at_1000
1742
- value: 85.32410301328747
1743
- - task:
1744
- type: Retrieval
1745
- dataset:
1746
- type: BeIR/cqadupstack
1747
- name: MTEB CQADupstackPhysicsRetrieval
1748
- config: default
1749
- split: test
1750
- revision: None
1751
- metrics:
1752
- - type: ndcg_at_1
1753
- value: 42.15591915303176
1754
- - type: ndcg_at_3
1755
- value: 48.15261407846446
1756
- - type: ndcg_at_5
1757
- value: 50.58031819816491
1758
- - type: ndcg_at_10
1759
- value: 53.159393156983015
1760
- - type: ndcg_at_100
1761
- value: 58.64024684800366
1762
- - type: ndcg_at_1000
1763
- value: 60.017254762428166
1764
- - type: map_at_1
1765
- value: 34.78577058702179
1766
- - type: map_at_3
1767
- value: 43.52147299813321
1768
- - type: map_at_5
1769
- value: 45.47857625732981
1770
- - type: map_at_10
1771
- value: 46.94467579029768
1772
- - type: map_at_100
1773
- value: 48.364473257035456
1774
- - type: map_at_1000
1775
- value: 48.460199893487435
1776
- - type: precision_at_1
1777
- value: 42.15591915303176
1778
- - type: precision_at_3
1779
- value: 22.842476740455762
1780
- - type: precision_at_5
1781
- value: 16.073147256977784
1782
- - type: precision_at_10
1783
- value: 9.566891241578338
1784
- - type: precision_at_100
1785
- value: 1.441770933589971
1786
- - type: precision_at_1000
1787
- value: 0.17045235803656864
1788
- - type: recall_at_1
1789
- value: 34.78577058702179
1790
- - type: recall_at_3
1791
- value: 51.705004026948195
1792
- - type: recall_at_5
1793
- value: 57.99470738835514
1794
- - type: recall_at_10
1795
- value: 65.73761786225693
1796
- - type: recall_at_100
1797
- value: 88.03733579833336
1798
- - type: recall_at_1000
1799
- value: 96.505175424102
1800
- - task:
1801
- type: Retrieval
1802
- dataset:
1803
- type: BeIR/cqadupstack
1804
- name: MTEB CQADupstackStatsRetrieval
1805
- config: default
1806
- split: test
1807
- revision: None
1808
- metrics:
1809
- - type: ndcg_at_1
1810
- value: 30.061349693251532
1811
- - type: ndcg_at_3
1812
- value: 36.63708916157646
1813
- - type: ndcg_at_5
1814
- value: 38.61671491681753
1815
- - type: ndcg_at_10
1816
- value: 41.350655796840066
1817
- - type: ndcg_at_100
1818
- value: 46.45326227358081
1819
- - type: ndcg_at_1000
1820
- value: 48.582285457159266
1821
- - type: map_at_1
1822
- value: 26.9244205862304
1823
- - type: map_at_3
1824
- value: 33.585406725744164
1825
- - type: map_at_5
1826
- value: 34.91193310921073
1827
- - type: map_at_10
1828
- value: 36.15920645617732
1829
- - type: map_at_100
1830
- value: 37.25917602757753
1831
- - type: map_at_1000
1832
- value: 37.35543998586382
1833
- - type: precision_at_1
1834
- value: 30.061349693251532
1835
- - type: precision_at_3
1836
- value: 16.002044989775
1837
- - type: precision_at_5
1838
- value: 11.012269938650379
1839
- - type: precision_at_10
1840
- value: 6.625766871165693
1841
- - type: precision_at_100
1842
- value: 1.0015337423312758
1843
- - type: precision_at_1000
1844
- value: 0.12638036809815958
1845
- - type: recall_at_1
1846
- value: 26.9244205862304
1847
- - type: recall_at_3
1848
- value: 40.92407975460122
1849
- - type: recall_at_5
1850
- value: 45.74576284315548
1851
- - type: recall_at_10
1852
- value: 54.04032657867014
1853
- - type: recall_at_100
1854
- value: 76.89573533447586
1855
- - type: recall_at_1000
1856
- value: 92.10000029943193
1857
- - task:
1858
- type: Retrieval
1859
- dataset:
1860
- type: BeIR/cqadupstack
1861
- name: MTEB CQADupstackWebmastersRetrieval
1862
- config: default
1863
- split: test
1864
- revision: None
1865
- metrics:
1866
- - type: ndcg_at_1
1867
- value: 36.16600790513834
1868
- - type: ndcg_at_3
1869
- value: 41.39539336351464
1870
- - type: ndcg_at_5
1871
- value: 44.286188181817465
1872
- - type: ndcg_at_10
1873
- value: 46.8079293900759
1874
- - type: ndcg_at_100
1875
- value: 52.77618002686582
1876
- - type: ndcg_at_1000
1877
- value: 54.74554787022661
1878
- - type: map_at_1
1879
- value: 29.947644735902585
1880
- - type: map_at_3
1881
- value: 36.84394907359118
1882
- - type: map_at_5
1883
- value: 38.9461665221235
1884
- - type: map_at_10
1885
- value: 40.38325122041743
1886
- - type: map_at_100
1887
- value: 42.15067269020822
1888
- - type: map_at_1000
1889
- value: 42.396412886053454
1890
- - type: precision_at_1
1891
- value: 36.16600790513834
1892
- - type: precision_at_3
1893
- value: 19.23583662714091
1894
- - type: precision_at_5
1895
- value: 14.268774703557394
1896
- - type: precision_at_10
1897
- value: 9.071146245059353
1898
- - type: precision_at_100
1899
- value: 1.7905138339920774
1900
- - type: precision_at_1000
1901
- value: 0.2537549407114581
1902
- - type: recall_at_1
1903
- value: 29.947644735902585
1904
- - type: recall_at_3
1905
- value: 43.95135576014935
1906
- - type: recall_at_5
1907
- value: 51.33413524177249
1908
- - type: recall_at_10
1909
- value: 58.597439631665615
1910
- - type: recall_at_100
1911
- value: 85.04925879936505
1912
- - type: recall_at_1000
1913
- value: 96.93189262162947
1914
- - task:
1915
- type: Retrieval
1916
- dataset:
1917
- type: BeIR/cqadupstack
1918
- name: MTEB CQADupstackWordpressRetrieval
1919
- config: default
1920
- split: test
1921
- revision: None
1922
- metrics:
1923
- - type: ndcg_at_1
1924
- value: 26.247689463955638
1925
- - type: ndcg_at_3
1926
- value: 33.25421096011386
1927
- - type: ndcg_at_5
1928
- value: 35.274958043979055
1929
- - type: ndcg_at_10
1930
- value: 37.895337114228504
1931
- - type: ndcg_at_100
1932
- value: 43.16359215810417
1933
- - type: ndcg_at_1000
1934
- value: 45.46544464874392
1935
- - type: map_at_1
1936
- value: 23.730646155069266
1937
- - type: map_at_3
1938
- value: 30.328510192859376
1939
- - type: map_at_5
1940
- value: 31.646131881091033
1941
- - type: map_at_10
1942
- value: 32.834529811633146
1943
- - type: map_at_100
1944
- value: 33.887475191512124
1945
- - type: map_at_1000
1946
- value: 33.98635376333761
1947
- - type: precision_at_1
1948
- value: 26.247689463955638
1949
- - type: precision_at_3
1950
- value: 14.417744916820693
1951
- - type: precision_at_5
1952
- value: 10.018484288354932
1953
- - type: precision_at_10
1954
- value: 6.00739371534199
1955
- - type: precision_at_100
1956
- value: 0.9426987060998051
1957
- - type: precision_at_1000
1958
- value: 0.12476894639556387
1959
- - type: recall_at_1
1960
- value: 23.730646155069266
1961
- - type: recall_at_3
1962
- value: 38.561206845149364
1963
- - type: recall_at_5
1964
- value: 43.38560610577783
1965
- - type: recall_at_10
1966
- value: 51.21370222407728
1967
- - type: recall_at_100
1968
- value: 75.61661144095109
1969
- - type: recall_at_1000
1970
- value: 92.54472715089256
1971
- - task:
1972
- type: Retrieval
1973
- dataset:
1974
- type: BeIR/cqadupstack
1975
- name: MTEB CQADupstackProgrammersRetrieval
1976
- config: default
1977
- split: test
1978
- revision: None
1979
- metrics:
1980
- - type: ndcg_at_1
1981
- value: 38.81278538812785
1982
- - type: ndcg_at_3
1983
- value: 43.78338523503654
1984
- - type: ndcg_at_5
1985
- value: 47.097296563014325
1986
- - type: ndcg_at_10
1987
- value: 50.282579667519435
1988
- - type: ndcg_at_100
1989
- value: 55.729033960190286
1990
- - type: ndcg_at_1000
1991
- value: 57.33724814332862
1992
- - type: map_at_1
1993
- value: 31.69764033847938
1994
- - type: map_at_3
1995
- value: 39.42951244122387
1996
- - type: map_at_5
1997
- value: 41.943723140417774
1998
- - type: map_at_10
1999
- value: 43.61013816936983
2000
- - type: map_at_100
2001
- value: 45.02590557151775
2002
- - type: map_at_1000
2003
- value: 45.125950171245066
2004
- - type: precision_at_1
2005
- value: 38.81278538812785
2006
- - type: precision_at_3
2007
- value: 20.96651445966523
2008
- - type: precision_at_5
2009
- value: 15.388127853881361
2010
- - type: precision_at_10
2011
- value: 9.474885844748805
2012
- - type: precision_at_100
2013
- value: 1.400684931506831
2014
- - type: precision_at_1000
2015
- value: 0.17191780821917388
2016
- - type: recall_at_1
2017
- value: 31.69764033847938
2018
- - type: recall_at_3
2019
- value: 46.60687843152849
2020
- - type: recall_at_5
2021
- value: 55.17297638322793
2022
- - type: recall_at_10
2023
- value: 64.45674471217188
2024
- - type: recall_at_100
2025
- value: 87.1937426751484
2026
- - type: recall_at_1000
2027
- value: 97.32787875629423
2028
- - task:
2029
- type: Retrieval
2030
- dataset:
2031
- type: BeIR/cqadupstack
2032
- name: MTEB CQADupstackEnglishRetrieval
2033
- config: default
2034
- split: test
2035
- revision: None
2036
- metrics:
2037
- - type: ndcg_at_1
2038
- value: 45.22292993630573
2039
- - type: ndcg_at_3
2040
- value: 50.48933696278536
2041
- - type: ndcg_at_5
2042
- value: 52.51230339563936
2043
- - type: ndcg_at_10
2044
- value: 54.63834990956019
2045
- - type: ndcg_at_100
2046
- value: 58.4908966688059
2047
- - type: ndcg_at_1000
2048
- value: 60.25262455573039
2049
- - type: map_at_1
2050
- value: 36.14176917496391
2051
- - type: map_at_3
2052
- value: 45.293425362542706
2053
- - type: map_at_5
2054
- value: 47.228727919799
2055
- - type: map_at_10
2056
- value: 48.603664692804365
2057
- - type: map_at_100
2058
- value: 49.87291685915334
2059
- - type: map_at_1000
2060
- value: 49.99758620164822
2061
- - type: precision_at_1
2062
- value: 45.22292993630573
2063
- - type: precision_at_3
2064
- value: 24.607218683651517
2065
- - type: precision_at_5
2066
- value: 17.273885350318157
2067
- - type: precision_at_10
2068
- value: 10.401273885350104
2069
- - type: precision_at_100
2070
- value: 1.5840764331210677
2071
- - type: precision_at_1000
2072
- value: 0.20216560509553294
2073
- - type: recall_at_1
2074
- value: 36.14176917496391
2075
- - type: recall_at_3
2076
- value: 52.458133860965276
2077
- - type: recall_at_5
2078
- value: 58.30933220798927
2079
- - type: recall_at_10
2080
- value: 64.76267431694271
2081
- - type: recall_at_100
2082
- value: 81.11863633256955
2083
- - type: recall_at_1000
2084
- value: 91.95898877878803
2085
- - task:
2086
- type: Retrieval
2087
- dataset:
2088
- type: BeIR/cqadupstack
2089
- name: MTEB CQADupstackMathematicaRetrieval
2090
- config: default
2091
- split: test
2092
- revision: None
2093
- metrics:
2094
- - type: ndcg_at_1
2095
- value: 25.37313432835821
2096
- - type: ndcg_at_3
2097
- value: 31.513955857649872
2098
- - type: ndcg_at_5
2099
- value: 33.894814999901286
2100
- - type: ndcg_at_10
2101
- value: 36.567795091777775
2102
- - type: ndcg_at_100
2103
- value: 42.692861355185926
2104
- - type: ndcg_at_1000
2105
- value: 45.1650634517594
2106
- - type: map_at_1
2107
- value: 20.137260127931768
2108
- - type: map_at_3
2109
- value: 27.513893824528164
2110
- - type: map_at_5
2111
- value: 29.228223959567245
2112
- - type: map_at_10
2113
- value: 30.486342453382235
2114
- - type: map_at_100
2115
- value: 31.93773531700923
2116
- - type: map_at_1000
2117
- value: 32.045221355885026
2118
- - type: precision_at_1
2119
- value: 25.37313432835821
2120
- - type: precision_at_3
2121
- value: 15.713101160862273
2122
- - type: precision_at_5
2123
- value: 11.218905472636896
2124
- - type: precision_at_10
2125
- value: 6.828358208955276
2126
- - type: precision_at_100
2127
- value: 1.1318407960198864
2128
- - type: precision_at_1000
2129
- value: 0.14776119402984852
2130
- - type: recall_at_1
2131
- value: 20.137260127931768
2132
- - type: recall_at_3
2133
- value: 35.516761430940534
2134
- - type: recall_at_5
2135
- value: 41.81044183842692
2136
- - type: recall_at_10
2137
- value: 49.84812658320122
2138
- - type: recall_at_100
2139
- value: 75.52224965471233
2140
- - type: recall_at_1000
2141
- value: 93.00114617278797
2142
- - task:
2143
- type: Retrieval
2144
- dataset:
2145
- type: BeIR/cqadupstack
2146
- name: MTEB CQADupstackGamingRetrieval
2147
- config: default
2148
- split: test
2149
- revision: None
2150
- metrics:
2151
- - type: ndcg_at_1
2152
- value: 52.10031347962383
2153
- - type: ndcg_at_3
2154
- value: 59.09283306711919
2155
- - type: ndcg_at_5
2156
- value: 61.70364710499664
2157
- - type: ndcg_at_10
2158
- value: 64.43508234673456
2159
- - type: ndcg_at_100
2160
- value: 68.08258162359128
2161
- - type: ndcg_at_1000
2162
- value: 68.78220525177915
2163
- - type: map_at_1
2164
- value: 45.67593534991653
2165
- - type: map_at_3
2166
- value: 55.17968153498597
2167
- - type: map_at_5
2168
- value: 57.073161405223026
2169
- - type: map_at_10
2170
- value: 58.55427425972989
2171
- - type: map_at_100
2172
- value: 59.58877825514076
2173
- - type: map_at_1000
2174
- value: 59.62753156251917
2175
- - type: precision_at_1
2176
- value: 52.10031347962383
2177
- - type: precision_at_3
2178
- value: 25.95611285266423
2179
- - type: precision_at_5
2180
- value: 17.667711598745708
2181
- - type: precision_at_10
2182
- value: 10.169278996864973
2183
- - type: precision_at_100
2184
- value: 1.2852664576802733
2185
- - type: precision_at_1000
2186
- value: 0.13786833855798794
2187
- - type: recall_at_1
2188
- value: 45.67593534991653
2189
- - type: recall_at_3
2190
- value: 63.87786043907147
2191
- - type: recall_at_5
2192
- value: 70.25761057674107
2193
- - type: recall_at_10
2194
- value: 77.97283230161469
2195
- - type: recall_at_100
2196
- value: 93.12900411473255
2197
- - type: recall_at_1000
2198
- value: 97.98040752351098
2199
- - task:
2200
- type: Retrieval
2201
- dataset:
2202
- type: BeIR/cqadupstack
2203
- name: MTEB CQADupstackGisRetrieval
2204
- config: default
2205
- split: test
2206
- revision: None
2207
- metrics:
2208
- - type: ndcg_at_1
2209
- value: 29.830508474576273
2210
- - type: ndcg_at_3
2211
- value: 36.43753958419226
2212
- - type: ndcg_at_5
2213
- value: 39.55362935996899
2214
- - type: ndcg_at_10
2215
- value: 43.11482816486947
2216
- - type: ndcg_at_100
2217
- value: 48.55701741086406
2218
- - type: ndcg_at_1000
2219
- value: 50.12437449225312
2220
- - type: map_at_1
2221
- value: 27.58676351896691
2222
- - type: map_at_3
2223
- value: 33.9831853645413
2224
- - type: map_at_5
2225
- value: 35.81743341404356
2226
- - type: map_at_10
2227
- value: 37.38087764923922
2228
- - type: map_at_100
2229
- value: 38.54334689204219
2230
- - type: map_at_1000
2231
- value: 38.60999368829795
2232
- - type: precision_at_1
2233
- value: 29.830508474576273
2234
- - type: precision_at_3
2235
- value: 15.21657250470804
2236
- - type: precision_at_5
2237
- value: 10.960451977401222
2238
- - type: precision_at_10
2239
- value: 6.779661016949213
2240
- - type: precision_at_100
2241
- value: 0.9977401129943356
2242
- - type: precision_at_1000
2243
- value: 0.11661016949152515
2244
- - type: recall_at_1
2245
- value: 27.58676351896691
2246
- - type: recall_at_3
2247
- value: 41.050040355125105
2248
- - type: recall_at_5
2249
- value: 48.356201237557165
2250
- - type: recall_at_10
2251
- value: 58.86871132633844
2252
- - type: recall_at_100
2253
- value: 83.44115081403217
2254
- - type: recall_at_1000
2255
- value: 95.14032985219426
2256
- - task:
2257
- type: Retrieval
2258
- dataset:
2259
- type: BeIR/cqadupstack
2260
- name: MTEB CQADupstackUnixRetrieval
2261
- config: default
2262
- split: test
2263
- revision: None
2264
- metrics:
2265
- - type: ndcg_at_1
2266
- value: 37.77985074626866
2267
- - type: ndcg_at_3
2268
- value: 42.68906535122145
2269
- - type: ndcg_at_5
2270
- value: 45.42572671347988
2271
- - type: ndcg_at_10
2272
- value: 48.503281334563006
2273
- - type: ndcg_at_100
2274
- value: 53.90759554634032
2275
- - type: ndcg_at_1000
2276
- value: 55.6750143459022
2277
- - type: map_at_1
2278
- value: 32.05179459843639
2279
- - type: map_at_3
2280
- value: 39.174397111663886
2281
- - type: map_at_5
2282
- value: 41.09602758395897
2283
- - type: map_at_10
2284
- value: 42.57548284992813
2285
- - type: map_at_100
2286
- value: 43.88590856115191
2287
- - type: map_at_1000
2288
- value: 43.97573928697477
2289
- - type: precision_at_1
2290
- value: 37.77985074626866
2291
- - type: precision_at_3
2292
- value: 19.40298507462699
2293
- - type: precision_at_5
2294
- value: 13.768656716417915
2295
- - type: precision_at_10
2296
- value: 8.330223880596947
2297
- - type: precision_at_100
2298
- value: 1.2266791044775944
2299
- - type: precision_at_1000
2300
- value: 0.14860074626865238
2301
- - type: recall_at_1
2302
- value: 32.05179459843639
2303
- - type: recall_at_3
2304
- value: 46.19290082326463
2305
- - type: recall_at_5
2306
- value: 53.065248391740916
2307
- - type: recall_at_10
2308
- value: 61.95742612487016
2309
- - type: recall_at_100
2310
- value: 84.95720140659506
2311
- - type: recall_at_1000
2312
- value: 96.7945875641771
2313
- - task:
2314
- type: Retrieval
2315
- dataset:
2316
- type: BeIR/cqadupstack
2317
- name: MTEB CQADupstackTexRetrieval
2318
- config: default
2319
- split: test
2320
- revision: None
2321
- metrics:
2322
- - type: ndcg_at_1
2323
- value: 24.36338609772884
2324
- - type: ndcg_at_3
2325
- value: 29.344263505458546
2326
- - type: ndcg_at_5
2327
- value: 31.648927411353355
2328
- - type: ndcg_at_10
2329
- value: 34.37718834167528
2330
- - type: ndcg_at_100
2331
- value: 39.988489670143565
2332
- - type: ndcg_at_1000
2333
- value: 42.59253219178224
2334
- - type: map_at_1
2335
- value: 20.102111701568827
2336
- - type: map_at_3
2337
- value: 26.034827870203504
2338
- - type: map_at_5
2339
- value: 27.635335063884625
2340
- - type: map_at_10
2341
- value: 28.955304300478456
2342
- - type: map_at_100
2343
- value: 30.17348927054766
2344
- - type: map_at_1000
2345
- value: 30.29821812881463
2346
- - type: precision_at_1
2347
- value: 24.36338609772884
2348
- - type: precision_at_3
2349
- value: 13.971094287680497
2350
- - type: precision_at_5
2351
- value: 10.178940123881386
2352
- - type: precision_at_10
2353
- value: 6.362697866482958
2354
- - type: precision_at_100
2355
- value: 1.0784583620096873
2356
- - type: precision_at_1000
2357
- value: 0.14810736407432443
2358
- - type: recall_at_1
2359
- value: 20.102111701568827
2360
- - type: recall_at_3
2361
- value: 32.51720798237882
2362
- - type: recall_at_5
2363
- value: 38.47052010632308
2364
- - type: recall_at_10
2365
- value: 46.560251311326375
2366
- - type: recall_at_100
2367
- value: 71.37281646052087
2368
- - type: recall_at_1000
2369
- value: 89.54176274473149
2370
- - task:
2371
- type: Retrieval
2372
- dataset:
2373
- type: BeIR/cqadupstack
2374
- name: MTEB CQADupstackAndroidRetrieval
2375
- config: default
2376
- split: test
2377
- revision: None
2378
- metrics:
2379
- - type: ndcg_at_1
2380
- value: 44.34907010014306
2381
- - type: ndcg_at_3
2382
- value: 50.3866971503038
2383
- - type: ndcg_at_5
2384
- value: 53.15366139760711
2385
- - type: ndcg_at_10
2386
- value: 56.56459368482132
2387
- - type: ndcg_at_100
2388
- value: 61.49499162448754
2389
- - type: ndcg_at_1000
2390
- value: 62.750952246569824
2391
- - type: map_at_1
2392
- value: 35.87684730898816
2393
- - type: map_at_3
2394
- value: 44.81019864282626
2395
- - type: map_at_5
2396
- value: 47.24254516428158
2397
- - type: map_at_10
2398
- value: 49.28704567095768
2399
- - type: map_at_100
2400
- value: 50.85906250580416
2401
- - type: map_at_1000
2402
- value: 50.96818352379094
2403
- - type: precision_at_1
2404
- value: 44.34907010014306
2405
- - type: precision_at_3
2406
- value: 24.463519313304776
2407
- - type: precision_at_5
2408
- value: 17.68240343347653
2409
- - type: precision_at_10
2410
- value: 11.173104434906978
2411
- - type: precision_at_100
2412
- value: 1.7095851216022702
2413
- - type: precision_at_1000
2414
- value: 0.21087267525035264
2415
- - type: recall_at_1
2416
- value: 35.87684730898816
2417
- - type: recall_at_3
2418
- value: 52.8360317975774
2419
- - type: recall_at_5
2420
- value: 60.826717819116716
2421
- - type: recall_at_10
2422
- value: 70.64783984145798
2423
- - type: recall_at_100
2424
- value: 90.90247835876467
2425
- - type: recall_at_1000
2426
- value: 98.27352916110131
2427
- - task:
2428
- type: Retrieval
2429
- dataset:
2430
- type: BeIR/cqadupstack
2431
- name: MTEB CQADupstackRetrieval
2432
- config: default
2433
- split: test
2434
- revision: None
2435
- metrics:
2436
- - type: ndcg_at_1
2437
- value: 36.038578730542476
2438
- - type: ndcg_at_3
2439
- value: 41.931365356453036
2440
- - type: ndcg_at_5
2441
- value: 44.479015523894994
2442
- - type: ndcg_at_10
2443
- value: 47.308084499970704
2444
- - type: ndcg_at_100
2445
- value: 52.498062430513606
2446
- - type: ndcg_at_1000
2447
- value: 54.2908789514719
2448
- - type: map_at_1
2449
- value: 30.38821701528966
2450
- - type: map_at_3
2451
- value: 37.974871761903636
2452
- - type: map_at_5
2453
- value: 39.85399878507757
2454
- - type: map_at_10
2455
- value: 41.31456611036795
2456
- - type: map_at_100
2457
- value: 42.62907836655835
2458
- - type: map_at_1000
2459
- value: 42.737235870659845
2460
- - type: precision_at_1
2461
- value: 36.038578730542476
2462
- - type: precision_at_3
2463
- value: 19.39960180094633
2464
- - type: precision_at_5
2465
- value: 13.79264655952497
2466
- - type: precision_at_10
2467
- value: 8.399223517333388
2468
- - type: precision_at_100
2469
- value: 1.2992373779520896
2470
- - type: precision_at_1000
2471
- value: 0.16327170951909567
2472
- - type: recall_at_1
2473
- value: 30.38821701528966
2474
- - type: recall_at_3
2475
- value: 45.51645512564165
2476
- - type: recall_at_5
2477
- value: 52.06077167834868
2478
- - type: recall_at_10
2479
- value: 60.38864106788279
2480
- - type: recall_at_100
2481
- value: 82.76968509918343
2482
- - type: recall_at_1000
2483
- value: 94.84170217080344
2484
  ---
2485
 
2486
 
@@ -2503,6 +1709,7 @@ For more details please refer to our Github: [FlagEmbedding](https://github.com/
2503
  - [ ] Evaluation Pipeline
2504
  - [ ] Technical Report
2505
 
 
2506
 
2507
 
2508
  ## Usage
 
26
  value: 93.1492537313433
27
  task:
28
  type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  - dataset:
30
  config: default
31
+ name: MTEB AmazonPolarityClassification
32
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
  split: test
34
  type: mteb/amazon_polarity
 
59
  task:
60
  type: Classification
61
  - dataset:
62
+ config: default
63
+ name: MTEB ArguAna
64
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
65
+ split: test
66
+ type: mteb/arguana
67
  metrics:
 
 
 
 
68
  - type: main_score
69
+ value: 83.07967801208441
70
+ - type: ndcg_at_1
71
+ value: 66.50071123755335
72
+ - type: ndcg_at_3
73
+ value: 80.10869593172173
74
+ - type: ndcg_at_5
75
+ value: 81.89670542467924
76
+ - type: ndcg_at_10
77
+ value: 83.07967801208441
78
+ - type: ndcg_at_100
79
+ value: 83.5991349601075
80
+ - type: ndcg_at_1000
81
+ value: 83.5991349601075
82
+ - type: map_at_1
83
+ value: 66.50071123755335
84
+ - type: map_at_3
85
+ value: 76.83736367946898
86
+ - type: map_at_5
87
+ value: 77.8473210052158
88
+ - type: map_at_10
89
+ value: 78.35472690735851
90
+ - type: map_at_100
91
+ value: 78.47388207611678
92
+ - type: map_at_1000
93
+ value: 78.47388207611678
94
+ - type: precision_at_1
95
+ value: 66.50071123755335
96
+ - type: precision_at_3
97
+ value: 29.848269321953076
98
+ - type: precision_at_5
99
+ value: 18.762446657183045
100
+ - type: precision_at_10
101
+ value: 9.736842105262909
102
+ - type: precision_at_100
103
+ value: 0.9964438122332677
104
+ - type: precision_at_1000
105
+ value: 0.09964438122332549
106
+ - type: recall_at_1
107
+ value: 66.50071123755335
108
+ - type: recall_at_3
109
+ value: 89.5448079658606
110
+ - type: recall_at_5
111
+ value: 93.8122332859175
112
+ - type: recall_at_10
113
+ value: 97.36842105263158
114
+ - type: recall_at_100
115
+ value: 99.6443812233286
116
+ - type: recall_at_1000
117
+ value: 99.6443812233286
118
  task:
119
+ type: Retrieval
120
  - dataset:
121
  config: default
122
+ name: MTEB ArxivClusteringP2P
123
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
124
  split: test
125
  type: mteb/arxiv-clustering-p2p
 
134
  type: Clustering
135
  - dataset:
136
  config: default
137
+ name: MTEB ArxivClusteringS2S
138
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
  split: test
140
  type: mteb/arxiv-clustering-s2s
 
149
  type: Clustering
150
  - dataset:
151
  config: default
152
+ name: MTEB AskUbuntuDupQuestions
153
  revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
  split: test
155
  type: mteb/askubuntudupquestions-reranking
 
164
  type: Reranking
165
  - dataset:
166
  config: default
167
+ name: MTEB BIOSSES
168
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
169
  split: test
170
  type: mteb/biosses-sts
171
  metrics:
172
  - type: main_score
173
  value: 86.47365710792691
174
+ - type: cosine_spearman
175
+ value: 86.47365710792691
176
+ - type: spearman
177
+ value: 86.47365710792691
178
  task:
179
  type: STS
180
  - dataset:
181
  config: default
182
+ name: MTEB Banking77Classification
183
  revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
  split: test
185
  type: mteb/banking77
 
194
  type: Classification
195
  - dataset:
196
  config: default
197
+ name: MTEB BiorxivClusteringP2P
198
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
199
  split: test
200
  type: mteb/biorxiv-clustering-p2p
 
209
  type: Clustering
210
  - dataset:
211
  config: default
212
+ name: MTEB BiorxivClusteringS2S
213
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
214
  split: test
215
  type: mteb/biorxiv-clustering-s2s
 
224
  type: Clustering
225
  - dataset:
226
  config: default
227
+ name: MTEB CQADupstackRetrieval
228
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
229
  split: test
230
+ type: mteb/cqadupstack
231
  metrics:
 
 
 
 
232
  - type: main_score
233
+ value: 47.308084499970704
234
+ - type: ndcg_at_1
235
+ value: 36.038578730542476
236
+ - type: ndcg_at_3
237
+ value: 41.931365356453036
238
+ - type: ndcg_at_5
239
+ value: 44.479015523894994
240
+ - type: ndcg_at_10
241
+ value: 47.308084499970704
242
+ - type: ndcg_at_100
243
+ value: 52.498062430513606
244
+ - type: ndcg_at_1000
245
+ value: 54.2908789514719
246
+ - type: map_at_1
247
+ value: 30.38821701528966
248
+ - type: map_at_3
249
+ value: 37.974871761903636
250
+ - type: map_at_5
251
+ value: 39.85399878507757
252
+ - type: map_at_10
253
+ value: 41.31456611036795
254
+ - type: map_at_100
255
+ value: 42.62907836655835
256
+ - type: map_at_1000
257
+ value: 42.737235870659845
258
+ - type: precision_at_1
259
+ value: 36.038578730542476
260
+ - type: precision_at_3
261
+ value: 19.39960180094633
262
+ - type: precision_at_5
263
+ value: 13.79264655952497
264
+ - type: precision_at_10
265
+ value: 8.399223517333388
266
+ - type: precision_at_100
267
+ value: 1.2992373779520896
268
+ - type: precision_at_1000
269
+ value: 0.16327170951909567
270
+ - type: recall_at_1
271
+ value: 30.38821701528966
272
+ - type: recall_at_3
273
+ value: 45.51645512564165
274
+ - type: recall_at_5
275
+ value: 52.06077167834868
276
+ - type: recall_at_10
277
+ value: 60.38864106788279
278
+ - type: recall_at_100
279
+ value: 82.76968509918343
280
+ - type: recall_at_1000
281
+ value: 94.84170217080344
282
  task:
283
+ type: Retrieval
284
+ - dataset:
285
+ config: default
286
+ name: MTEB ClimateFEVER
287
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
288
+ split: test
289
+ type: mteb/climate-fever
290
+ metrics:
291
+ - type: main_score
292
+ value: 45.4272998284769
293
+ - type: ndcg_at_1
294
+ value: 44.36482084690554
295
+ - type: ndcg_at_3
296
+ value: 38.13005747178844
297
+ - type: ndcg_at_5
298
+ value: 40.83474510717123
299
+ - type: ndcg_at_10
300
+ value: 45.4272998284769
301
+ - type: ndcg_at_100
302
+ value: 52.880220707479516
303
+ - type: ndcg_at_1000
304
+ value: 55.364753427333
305
+ - type: map_at_1
306
+ value: 19.200868621064064
307
+ - type: map_at_3
308
+ value: 28.33785740137525
309
+ - type: map_at_5
310
+ value: 31.67162504524064
311
+ - type: map_at_10
312
+ value: 34.417673164090075
313
+ - type: map_at_100
314
+ value: 36.744753097028976
315
+ - type: map_at_1000
316
+ value: 36.91262189016135
317
+ - type: precision_at_1
318
+ value: 44.36482084690554
319
+ - type: precision_at_3
320
+ value: 29.14223669923975
321
+ - type: precision_at_5
322
+ value: 22.410423452768388
323
+ - type: precision_at_10
324
+ value: 14.293159609120309
325
+ - type: precision_at_100
326
+ value: 2.248859934853431
327
+ - type: precision_at_1000
328
+ value: 0.2722475570032542
329
+ - type: recall_at_1
330
+ value: 19.200868621064064
331
+ - type: recall_at_3
332
+ value: 34.132464712269176
333
+ - type: recall_at_5
334
+ value: 42.35613463626491
335
+ - type: recall_at_10
336
+ value: 52.50814332247546
337
+ - type: recall_at_100
338
+ value: 77.16178067318128
339
+ - type: recall_at_1000
340
+ value: 90.59174809989138
341
+ task:
342
+ type: Retrieval
343
+ - dataset:
344
+ config: default
345
+ name: MTEB DBPedia
346
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
347
+ split: test
348
+ type: mteb/dbpedia
349
+ metrics:
350
+ - type: main_score
351
+ value: 51.634197691802754
352
+ - type: ndcg_at_1
353
+ value: 64.375
354
+ - type: ndcg_at_3
355
+ value: 55.677549598242614
356
+ - type: ndcg_at_5
357
+ value: 53.44347199908503
358
+ - type: ndcg_at_10
359
+ value: 51.634197691802754
360
+ - type: ndcg_at_100
361
+ value: 56.202861267183415
362
+ - type: ndcg_at_1000
363
+ value: 63.146019108272576
364
+ - type: map_at_1
365
+ value: 9.789380503780919
366
+ - type: map_at_3
367
+ value: 16.146582195277016
368
+ - type: map_at_5
369
+ value: 19.469695222167193
370
+ - type: map_at_10
371
+ value: 24.163327344766145
372
+ - type: map_at_100
373
+ value: 35.47047690245571
374
+ - type: map_at_1000
375
+ value: 37.5147432331838
376
+ - type: precision_at_1
377
+ value: 76.25
378
+ - type: precision_at_3
379
+ value: 59.08333333333333
380
+ - type: precision_at_5
381
+ value: 52.24999999999997
382
+ - type: precision_at_10
383
+ value: 42.54999999999994
384
+ - type: precision_at_100
385
+ value: 13.460000000000008
386
+ - type: precision_at_1000
387
+ value: 2.4804999999999966
388
+ - type: recall_at_1
389
+ value: 9.789380503780919
390
+ - type: recall_at_3
391
+ value: 17.48487134027656
392
+ - type: recall_at_5
393
+ value: 22.312024269698806
394
+ - type: recall_at_10
395
+ value: 30.305380335237324
396
+ - type: recall_at_100
397
+ value: 62.172868946596424
398
+ - type: recall_at_1000
399
+ value: 85.32410301328747
400
+ task:
401
+ type: Retrieval
402
  - dataset:
403
  config: default
404
+ name: MTEB EmotionClassification
405
  revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
406
+ split: test
407
  type: mteb/emotion
408
  metrics:
409
  - type: accuracy
410
+ value: 93.36
411
  - type: f1
412
+ value: 89.73665936982262
413
  - type: main_score
414
+ value: 93.36
415
  task:
416
  type: Classification
417
  - dataset:
418
  config: default
419
+ name: MTEB FEVER
420
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
421
  split: test
422
+ type: mteb/fever
423
  metrics:
424
+ - type: main_score
425
+ value: 92.82809814626805
426
+ - type: ndcg_at_1
427
+ value: 88.98889888988899
428
+ - type: ndcg_at_3
429
+ value: 91.82404417747676
430
+ - type: ndcg_at_5
431
+ value: 92.41785792357787
432
+ - type: ndcg_at_10
433
+ value: 92.82809814626805
434
+ - type: ndcg_at_100
435
+ value: 93.31730867509245
436
+ - type: ndcg_at_1000
437
+ value: 93.45171203408582
438
+ - type: map_at_1
439
+ value: 82.64125817343636
440
+ - type: map_at_3
441
+ value: 89.39970782792554
442
+ - type: map_at_5
443
+ value: 89.96799501378695
444
+ - type: map_at_10
445
+ value: 90.27479706587437
446
+ - type: map_at_100
447
+ value: 90.45185655778057
448
+ - type: map_at_1000
449
+ value: 90.46130471574544
450
+ - type: precision_at_1
451
+ value: 88.98889888988899
452
+ - type: precision_at_3
453
+ value: 34.923492349234245
454
+ - type: precision_at_5
455
+ value: 21.524152415244043
456
+ - type: precision_at_10
457
+ value: 11.033603360337315
458
+ - type: precision_at_100
459
+ value: 1.1521152115211895
460
+ - type: precision_at_1000
461
+ value: 0.11765676567657675
462
+ - type: recall_at_1
463
+ value: 82.64125817343636
464
+ - type: recall_at_3
465
+ value: 94.35195900542428
466
+ - type: recall_at_5
467
+ value: 95.9071323799047
468
+ - type: recall_at_10
469
+ value: 97.04234113887586
470
+ - type: recall_at_100
471
+ value: 98.77282371094255
472
+ - type: recall_at_1000
473
+ value: 99.5555567461508
474
+ task:
475
+ type: Retrieval
476
+ - dataset:
477
+ config: default
478
+ name: MTEB FiQA2018
479
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
480
+ split: test
481
+ type: mteb/fiqa
482
+ metrics:
483
+ - type: main_score
484
+ value: 59.67151242793314
485
+ - type: ndcg_at_1
486
+ value: 57.407407407407405
487
+ - type: ndcg_at_3
488
+ value: 53.79975378289304
489
+ - type: ndcg_at_5
490
+ value: 56.453379423655406
491
+ - type: ndcg_at_10
492
+ value: 59.67151242793314
493
+ - type: ndcg_at_100
494
+ value: 65.34055762539253
495
+ - type: ndcg_at_1000
496
+ value: 67.07707746043032
497
+ - type: map_at_1
498
+ value: 30.65887045053714
499
+ - type: map_at_3
500
+ value: 44.09107110881799
501
+ - type: map_at_5
502
+ value: 48.18573748068346
503
+ - type: map_at_10
504
+ value: 51.03680979612876
505
+ - type: map_at_100
506
+ value: 53.03165194566928
507
+ - type: map_at_1000
508
+ value: 53.16191096190861
509
+ - type: precision_at_1
510
+ value: 57.407407407407405
511
+ - type: precision_at_3
512
+ value: 35.493827160493886
513
+ - type: precision_at_5
514
+ value: 26.913580246913547
515
+ - type: precision_at_10
516
+ value: 16.435185185185155
517
+ - type: precision_at_100
518
+ value: 2.2685185185184986
519
+ - type: precision_at_1000
520
+ value: 0.25864197530863964
521
+ - type: recall_at_1
522
+ value: 30.65887045053714
523
+ - type: recall_at_3
524
+ value: 48.936723427464194
525
+ - type: recall_at_5
526
+ value: 58.55942925387371
527
+ - type: recall_at_10
528
+ value: 68.45128551147073
529
+ - type: recall_at_100
530
+ value: 88.24599311867836
531
+ - type: recall_at_1000
532
+ value: 98.18121693121691
533
+ task:
534
+ type: Retrieval
535
+ - dataset:
536
+ config: default
537
+ name: MTEB HotpotQA
538
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
539
+ split: test
540
+ type: mteb/hotpotqa
541
+ metrics:
542
+ - type: main_score
543
+ value: 85.13780800141961
544
+ - type: ndcg_at_1
545
+ value: 89.9392302498312
546
+ - type: ndcg_at_3
547
+ value: 81.2061569376288
548
+ - type: ndcg_at_5
549
+ value: 83.53311592078133
550
+ - type: ndcg_at_10
551
+ value: 85.13780800141961
552
+ - type: ndcg_at_100
553
+ value: 87.02630661625386
554
+ - type: ndcg_at_1000
555
+ value: 87.47294723601075
556
+ - type: map_at_1
557
+ value: 44.9696151249156
558
+ - type: map_at_3
559
+ value: 76.46972766148966
560
+ - type: map_at_5
561
+ value: 78.47749268512187
562
+ - type: map_at_10
563
+ value: 79.49792611170005
564
+ - type: map_at_100
565
+ value: 80.09409086274644
566
+ - type: map_at_1000
567
+ value: 80.11950878917663
568
+ - type: precision_at_1
569
+ value: 89.9392302498312
570
+ - type: precision_at_3
571
+ value: 53.261309925724234
572
+ - type: precision_at_5
573
+ value: 33.79338284942924
574
+ - type: precision_at_10
575
+ value: 17.69750168805041
576
+ - type: precision_at_100
577
+ value: 1.9141120864280805
578
+ - type: precision_at_1000
579
+ value: 0.19721809588118133
580
+ - type: recall_at_1
581
+ value: 44.9696151249156
582
+ - type: recall_at_3
583
+ value: 79.8919648885888
584
+ - type: recall_at_5
585
+ value: 84.48345712356516
586
+ - type: recall_at_10
587
+ value: 88.48750844024308
588
+ - type: recall_at_100
589
+ value: 95.70560432140446
590
+ - type: recall_at_1000
591
+ value: 98.60904794058068
592
+ task:
593
+ type: Retrieval
594
+ - dataset:
595
+ config: default
596
+ name: MTEB ImdbClassification
597
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
598
+ split: test
599
+ type: mteb/imdb
600
+ metrics:
601
+ - type: accuracy
602
+ value: 96.9144
603
  - type: ap
604
  value: 95.45276911068486
605
  - type: f1
 
609
  task:
610
  type: Classification
611
  - dataset:
612
+ config: default
613
+ name: MTEB MSMARCO
614
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
615
+ split: dev
616
+ type: mteb/msmarco
617
  metrics:
 
 
 
 
618
  - type: main_score
619
+ value: 46.78865753107054
620
+ - type: ndcg_at_1
621
+ value: 26.63323782234957
622
+ - type: ndcg_at_3
623
+ value: 38.497585804985754
624
+ - type: ndcg_at_5
625
+ value: 42.72761631631636
626
+ - type: ndcg_at_10
627
+ value: 46.78865753107054
628
+ - type: ndcg_at_100
629
+ value: 51.96170786623209
630
+ - type: ndcg_at_1000
631
+ value: 52.82713901970963
632
+ - type: map_at_1
633
+ value: 25.89063992359121
634
+ - type: map_at_3
635
+ value: 35.299466730340654
636
+ - type: map_at_5
637
+ value: 37.68771887933786
638
+ - type: map_at_10
639
+ value: 39.40908074468253
640
+ - type: map_at_100
641
+ value: 40.53444082323405
642
+ - type: map_at_1000
643
+ value: 40.57183037649452
644
+ - type: precision_at_1
645
+ value: 26.63323782234957
646
+ - type: precision_at_3
647
+ value: 16.265520534861793
648
+ - type: precision_at_5
649
+ value: 11.902578796562304
650
+ - type: precision_at_10
651
+ value: 7.262177650430416
652
+ - type: precision_at_100
653
+ value: 0.9819484240687512
654
+ - type: precision_at_1000
655
+ value: 0.10571633237823287
656
+ - type: recall_at_1
657
+ value: 25.89063992359121
658
+ - type: recall_at_3
659
+ value: 46.99737344794652
660
+ - type: recall_at_5
661
+ value: 57.160936007640906
662
+ - type: recall_at_10
663
+ value: 69.43409742120343
664
+ - type: recall_at_100
665
+ value: 92.86413562559697
666
+ - type: recall_at_1000
667
+ value: 99.3230659025788
668
  task:
669
+ type: Retrieval
670
  - dataset:
671
  config: en
672
  name: MTEB MTOPDomainClassification (en)
673
  revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
674
+ split: test
675
  type: mteb/mtop_domain
676
  metrics:
677
  - type: accuracy
678
+ value: 98.42225262197901
679
  - type: f1
680
+ value: 98.31652547061115
681
  - type: main_score
682
+ value: 98.42225262197901
683
  task:
684
  type: Classification
685
  - dataset:
 
697
  value: 94.00136798905609
698
  task:
699
  type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700
  - dataset:
701
  config: en
702
  name: MTEB MassiveIntentClassification (en)
 
712
  value: 82.92535305985204
713
  task:
714
  type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715
  - dataset:
716
  config: en
717
  name: MTEB MassiveScenarioClassification (en)
 
727
  value: 85.60188298587758
728
  task:
729
  type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730
  - dataset:
731
  config: default
732
+ name: MTEB MedrxivClusteringP2P
733
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
734
  split: test
735
  type: mteb/medrxiv-clustering-p2p
 
744
  type: Clustering
745
  - dataset:
746
  config: default
747
+ name: MTEB MedrxivClusteringS2S
748
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
749
  split: test
750
  type: mteb/medrxiv-clustering-s2s
 
759
  type: Clustering
760
  - dataset:
761
  config: default
762
+ name: MTEB MindSmallReranking
763
  revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7
764
  split: test
765
  type: mteb/mind_small
 
774
  type: Reranking
775
  - dataset:
776
  config: default
777
+ name: MTEB NFCorpus
778
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
779
+ split: test
780
+ type: mteb/nfcorpus
781
+ metrics:
782
+ - type: main_score
783
+ value: 41.850870119787835
784
+ - type: ndcg_at_1
785
+ value: 52.47678018575851
786
+ - type: ndcg_at_3
787
+ value: 47.43993801247414
788
+ - type: ndcg_at_5
789
+ value: 45.08173173082719
790
+ - type: ndcg_at_10
791
+ value: 41.850870119787835
792
+ - type: ndcg_at_100
793
+ value: 37.79284946590978
794
+ - type: ndcg_at_1000
795
+ value: 46.58046062123418
796
+ - type: map_at_1
797
+ value: 6.892464464226138
798
+ - type: map_at_3
799
+ value: 12.113195798233127
800
+ - type: map_at_5
801
+ value: 13.968475602788812
802
+ - type: map_at_10
803
+ value: 16.47564069781326
804
+ - type: map_at_100
805
+ value: 20.671726065190025
806
+ - type: map_at_1000
807
+ value: 22.328875914012006
808
+ - type: precision_at_1
809
+ value: 53.86996904024768
810
+ - type: precision_at_3
811
+ value: 43.96284829721363
812
+ - type: precision_at_5
813
+ value: 38.69969040247682
814
+ - type: precision_at_10
815
+ value: 30.928792569659457
816
+ - type: precision_at_100
817
+ value: 9.507739938080498
818
+ - type: precision_at_1000
819
+ value: 2.25882352941176
820
+ - type: recall_at_1
821
+ value: 6.892464464226138
822
+ - type: recall_at_3
823
+ value: 13.708153358278407
824
+ - type: recall_at_5
825
+ value: 16.651919797359145
826
+ - type: recall_at_10
827
+ value: 21.01801714352559
828
+ - type: recall_at_100
829
+ value: 37.01672102843443
830
+ - type: recall_at_1000
831
+ value: 69.8307270724072
832
+ task:
833
+ type: Retrieval
834
+ - dataset:
835
+ config: default
836
+ name: MTEB NQ
837
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
838
+ split: test
839
+ type: mteb/nq
840
+ metrics:
841
+ - type: main_score
842
+ value: 73.88350836507092
843
+ - type: ndcg_at_1
844
+ value: 57.0683661645423
845
+ - type: ndcg_at_3
846
+ value: 67.89935813080585
847
+ - type: ndcg_at_5
848
+ value: 71.47769719452941
849
+ - type: ndcg_at_10
850
+ value: 73.88350836507092
851
+ - type: ndcg_at_100
852
+ value: 75.76561068060907
853
+ - type: ndcg_at_1000
854
+ value: 75.92437662684215
855
+ - type: map_at_1
856
+ value: 51.00424874468904
857
+ - type: map_at_3
858
+ value: 63.87359984550011
859
+ - type: map_at_5
860
+ value: 66.23696407879494
861
+ - type: map_at_10
862
+ value: 67.42415446608673
863
+ - type: map_at_100
864
+ value: 67.92692839842621
865
+ - type: map_at_1000
866
+ value: 67.93437922640133
867
+ - type: precision_at_1
868
+ value: 57.0683661645423
869
+ - type: precision_at_3
870
+ value: 29.692931633836416
871
+ - type: precision_at_5
872
+ value: 20.046349942062854
873
+ - type: precision_at_10
874
+ value: 10.950173812283
875
+ - type: precision_at_100
876
+ value: 1.1995944380069687
877
+ - type: precision_at_1000
878
+ value: 0.12146581691772171
879
+ - type: recall_at_1
880
+ value: 51.00424874468904
881
+ - type: recall_at_3
882
+ value: 75.93665507918116
883
+ - type: recall_at_5
884
+ value: 83.95133256083433
885
+ - type: recall_at_10
886
+ value: 90.78794901506375
887
+ - type: recall_at_100
888
+ value: 98.61915797605253
889
+ - type: recall_at_1000
890
+ value: 99.7827346465817
891
+ task:
892
+ type: Retrieval
893
+ - dataset:
894
+ config: default
895
+ name: MTEB QuoraRetrieval
896
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
897
+ split: test
898
+ type: mteb/quora
899
+ metrics:
900
+ - type: main_score
901
+ value: 90.95410848372035
902
+ - type: ndcg_at_1
903
+ value: 84.61999999999999
904
+ - type: ndcg_at_3
905
+ value: 88.57366734033212
906
+ - type: ndcg_at_5
907
+ value: 89.89804048972175
908
+ - type: ndcg_at_10
909
+ value: 90.95410848372035
910
+ - type: ndcg_at_100
911
+ value: 91.83227134455773
912
+ - type: ndcg_at_1000
913
+ value: 91.88368412611601
914
+ - type: map_at_1
915
+ value: 73.4670089207039
916
+ - type: map_at_3
917
+ value: 84.87862925508942
918
+ - type: map_at_5
919
+ value: 86.68002324701408
920
+ - type: map_at_10
921
+ value: 87.7165466015312
922
+ - type: map_at_100
923
+ value: 88.28718809614146
924
+ - type: map_at_1000
925
+ value: 88.29877148480672
926
+ - type: precision_at_1
927
+ value: 84.61999999999999
928
+ - type: precision_at_3
929
+ value: 38.82333333333838
930
+ - type: precision_at_5
931
+ value: 25.423999999998642
932
+ - type: precision_at_10
933
+ value: 13.787999999998583
934
+ - type: precision_at_100
935
+ value: 1.5442999999999767
936
+ - type: precision_at_1000
937
+ value: 0.15672999999997972
938
+ - type: recall_at_1
939
+ value: 73.4670089207039
940
+ - type: recall_at_3
941
+ value: 89.98389854832143
942
+ - type: recall_at_5
943
+ value: 93.88541046010576
944
+ - type: recall_at_10
945
+ value: 96.99779417520634
946
+ - type: recall_at_100
947
+ value: 99.80318763957743
948
+ - type: recall_at_1000
949
+ value: 99.99638888888889
950
+ task:
951
+ type: Retrieval
952
+ - dataset:
953
+ config: default
954
+ name: MTEB RedditClustering
955
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
956
  split: test
957
  type: mteb/reddit-clustering
 
966
  type: Clustering
967
  - dataset:
968
  config: default
969
+ name: MTEB RedditClusteringP2P
970
  revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
971
  split: test
972
  type: mteb/reddit-clustering-p2p
 
981
  type: Clustering
982
  - dataset:
983
  config: default
984
+ name: MTEB SCIDOCS
985
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
986
+ split: test
987
+ type: mteb/scidocs
988
+ metrics:
989
+ - type: main_score
990
+ value: 25.25865384510787
991
+ - type: ndcg_at_1
992
+ value: 28.7
993
+ - type: ndcg_at_3
994
+ value: 23.61736427940938
995
+ - type: ndcg_at_5
996
+ value: 20.845690325673885
997
+ - type: ndcg_at_10
998
+ value: 25.25865384510787
999
+ - type: ndcg_at_100
1000
+ value: 36.18596641088721
1001
+ - type: ndcg_at_1000
1002
+ value: 41.7166868935345
1003
+ - type: map_at_1
1004
+ value: 5.828333333333361
1005
+ - type: map_at_3
1006
+ value: 10.689166666666676
1007
+ - type: map_at_5
1008
+ value: 13.069916666666668
1009
+ - type: map_at_10
1010
+ value: 15.4901164021164
1011
+ - type: map_at_100
1012
+ value: 18.61493245565425
1013
+ - type: map_at_1000
1014
+ value: 18.99943478016456
1015
+ - type: precision_at_1
1016
+ value: 28.7
1017
+ - type: precision_at_3
1018
+ value: 22.30000000000006
1019
+ - type: precision_at_5
1020
+ value: 18.55999999999997
1021
+ - type: precision_at_10
1022
+ value: 13.289999999999946
1023
+ - type: precision_at_100
1024
+ value: 2.905000000000005
1025
+ - type: precision_at_1000
1026
+ value: 0.4218999999999946
1027
+ - type: recall_at_1
1028
+ value: 5.828333333333361
1029
+ - type: recall_at_3
1030
+ value: 13.548333333333387
1031
+ - type: recall_at_5
1032
+ value: 18.778333333333308
1033
+ - type: recall_at_10
1034
+ value: 26.939999999999902
1035
+ - type: recall_at_100
1036
+ value: 58.91333333333344
1037
+ - type: recall_at_1000
1038
+ value: 85.57499999999972
1039
+ task:
1040
+ type: Retrieval
1041
+ - dataset:
1042
+ config: default
1043
+ name: MTEB SICK-R
1044
  revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1045
  split: test
1046
  type: mteb/sickr-sts
1047
  metrics:
1048
  - type: main_score
1049
  value: 83.86733787791422
1050
+ - type: cosine_spearman
1051
+ value: 83.86733787791422
1052
+ - type: spearman
1053
+ value: 83.86733787791422
1054
  task:
1055
  type: STS
1056
  - dataset:
1057
  config: default
1058
+ name: MTEB STS12
1059
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1060
  split: test
1061
  type: mteb/sts12-sts
1062
  metrics:
1063
  - type: main_score
1064
  value: 78.14269330480724
1065
+ - type: cosine_spearman
1066
+ value: 78.14269330480724
1067
+ - type: spearman
1068
+ value: 78.14269330480724
1069
  task:
1070
  type: STS
1071
  - dataset:
1072
  config: default
1073
+ name: MTEB STS13
1074
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1075
  split: test
1076
  type: mteb/sts13-sts
1077
  metrics:
1078
  - type: main_score
1079
  value: 86.58640009300751
1080
+ - type: cosine_spearman
1081
+ value: 86.58640009300751
1082
+ - type: spearman
1083
+ value: 86.58640009300751
1084
  task:
1085
  type: STS
1086
  - dataset:
1087
  config: default
1088
+ name: MTEB STS14
1089
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1090
  split: test
1091
  type: mteb/sts14-sts
1092
  metrics:
1093
  - type: main_score
1094
  value: 82.8292579957437
1095
+ - type: cosine_spearman
1096
+ value: 82.8292579957437
1097
+ - type: spearman
1098
+ value: 82.8292579957437
1099
  task:
1100
  type: STS
1101
  - dataset:
1102
  config: default
1103
+ name: MTEB STS15
1104
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1105
  split: test
1106
  type: mteb/sts15-sts
1107
  metrics:
1108
  - type: main_score
1109
  value: 87.77203714228862
1110
+ - type: cosine_spearman
1111
+ value: 87.77203714228862
1112
+ - type: spearman
1113
+ value: 87.77203714228862
1114
+ task:
1115
  type: STS
1116
  - dataset:
1117
  config: default
1118
+ name: MTEB STS16
1119
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1120
  split: test
1121
  type: mteb/sts16-sts
1122
  metrics:
1123
  - type: main_score
1124
  value: 87.0439304006969
1125
+ - type: cosine_spearman
1126
+ value: 87.0439304006969
1127
+ - type: spearman
1128
+ value: 87.0439304006969
1129
  task:
1130
  type: STS
1131
  - dataset:
 
1137
  metrics:
1138
  - type: main_score
1139
  value: 91.24736138013424
1140
+ - type: cosine_spearman
1141
+ value: 91.24736138013424
1142
+ - type: spearman
1143
+ value: 91.24736138013424
1144
  task:
1145
  type: STS
1146
  - dataset:
 
1152
  metrics:
1153
  - type: main_score
1154
  value: 70.07326214706
1155
+ - type: cosine_spearman
1156
+ value: 70.07326214706
1157
+ - type: spearman
1158
+ value: 70.07326214706
1159
  task:
1160
  type: STS
1161
  - dataset:
1162
  config: default
1163
+ name: MTEB STSBenchmark
1164
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
1165
  split: test
1166
  type: mteb/stsbenchmark-sts
1167
  metrics:
1168
  - type: main_score
1169
  value: 88.42076443255168
1170
+ - type: cosine_spearman
1171
+ value: 88.42076443255168
1172
+ - type: spearman
1173
+ value: 88.42076443255168
1174
  task:
1175
  type: STS
1176
  - dataset:
1177
  config: default
1178
+ name: MTEB SciDocsRR
1179
  revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
1180
  split: test
1181
  type: mteb/scidocs-reranking
 
1190
  type: Reranking
1191
  - dataset:
1192
  config: default
1193
+ name: MTEB SciFact
1194
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
1195
+ split: test
1196
+ type: mteb/scifact
1197
+ metrics:
1198
+ - type: main_score
1199
+ value: 79.09159079425369
1200
+ - type: ndcg_at_1
1201
+ value: 66.0
1202
+ - type: ndcg_at_3
1203
+ value: 74.98853481223065
1204
+ - type: ndcg_at_5
1205
+ value: 77.29382051205019
1206
+ - type: ndcg_at_10
1207
+ value: 79.09159079425369
1208
+ - type: ndcg_at_100
1209
+ value: 80.29692802526776
1210
+ - type: ndcg_at_1000
1211
+ value: 80.55210036585547
1212
+ - type: map_at_1
1213
+ value: 62.994444444444454
1214
+ - type: map_at_3
1215
+ value: 71.7425925925926
1216
+ - type: map_at_5
1217
+ value: 73.6200925925926
1218
+ - type: map_at_10
1219
+ value: 74.50223544973547
1220
+ - type: map_at_100
1221
+ value: 74.82438594015447
1222
+ - type: map_at_1000
1223
+ value: 74.83420474892468
1224
+ - type: precision_at_1
1225
+ value: 66.0
1226
+ - type: precision_at_3
1227
+ value: 29.44444444444439
1228
+ - type: precision_at_5
1229
+ value: 19.40000000000008
1230
+ - type: precision_at_10
1231
+ value: 10.366666666666715
1232
+ - type: precision_at_100
1233
+ value: 1.0999999999999928
1234
+ - type: precision_at_1000
1235
+ value: 0.11200000000000007
1236
+ - type: recall_at_1
1237
+ value: 62.994444444444454
1238
+ - type: recall_at_3
1239
+ value: 80.89999999999998
1240
+ - type: recall_at_5
1241
+ value: 86.72777777777779
1242
+ - type: recall_at_10
1243
+ value: 91.88888888888887
1244
+ - type: recall_at_100
1245
+ value: 97.0
1246
+ - type: recall_at_1000
1247
+ value: 99.0
1248
+ task:
1249
+ type: Retrieval
1250
+ - dataset:
1251
+ config: default
1252
+ name: MTEB SprintDuplicateQuestions
1253
  revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
1254
  split: test
1255
  type: mteb/sprintduplicatequestions-pairclassification
 
1322
  type: PairClassification
1323
  - dataset:
1324
  config: default
1325
+ name: MTEB StackExchangeClustering
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1327
  split: test
1328
  type: mteb/stackexchange-clustering
 
1337
  type: Clustering
1338
  - dataset:
1339
  config: default
1340
+ name: MTEB StackExchangeClusteringP2P
1341
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1342
  split: test
1343
  type: mteb/stackexchange-clustering-p2p
 
1352
  type: Clustering
1353
  - dataset:
1354
  config: default
1355
+ name: MTEB StackOverflowDupQuestions
1356
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
1357
  split: test
1358
  type: mteb/stackoverflowdupquestions-reranking
 
1367
  type: Reranking
1368
  - dataset:
1369
  config: default
1370
+ name: MTEB SummEval
1371
  revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
1372
  split: test
1373
  type: mteb/summeval
 
1378
  type: Summarization
1379
  - dataset:
1380
  config: default
1381
+ name: MTEB TRECCOVID
1382
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
1383
+ split: test
1384
+ type: mteb/trec-covid
1385
+ metrics:
1386
+ - type: main_score
1387
+ value: 79.07987651251462
1388
+ - type: ndcg_at_1
1389
+ value: 83.0
1390
+ - type: ndcg_at_3
1391
+ value: 79.86598407528447
1392
+ - type: ndcg_at_5
1393
+ value: 79.27684428714952
1394
+ - type: ndcg_at_10
1395
+ value: 79.07987651251462
1396
+ - type: ndcg_at_100
1397
+ value: 64.55029164391163
1398
+ - type: ndcg_at_1000
1399
+ value: 59.42333857860492
1400
+ - type: map_at_1
1401
+ value: 0.226053732680979
1402
+ - type: map_at_3
1403
+ value: 0.644034626013194
1404
+ - type: map_at_5
1405
+ value: 1.045196967937728
1406
+ - type: map_at_10
1407
+ value: 2.0197496659905085
1408
+ - type: map_at_100
1409
+ value: 13.316018005224159
1410
+ - type: map_at_1000
1411
+ value: 33.784766957424104
1412
+ - type: precision_at_1
1413
+ value: 88.0
1414
+ - type: precision_at_3
1415
+ value: 86.66666666666667
1416
+ - type: precision_at_5
1417
+ value: 85.20000000000002
1418
+ - type: precision_at_10
1419
+ value: 84.19999999999997
1420
+ - type: precision_at_100
1421
+ value: 67.88000000000001
1422
+ - type: precision_at_1000
1423
+ value: 26.573999999999998
1424
+ - type: recall_at_1
1425
+ value: 0.226053732680979
1426
+ - type: recall_at_3
1427
+ value: 0.6754273711472734
1428
+ - type: recall_at_5
1429
+ value: 1.1168649828059245
1430
+ - type: recall_at_10
1431
+ value: 2.2215081031265207
1432
+ - type: recall_at_100
1433
+ value: 16.694165236664727
1434
+ - type: recall_at_1000
1435
+ value: 56.7022214857503
1436
+ task:
1437
+ type: Retrieval
1438
+ - dataset:
1439
+ config: default
1440
+ name: MTEB Touche2020
1441
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
1442
+ split: test
1443
+ type: mteb/touche2020
1444
+ metrics:
1445
+ - type: main_score
1446
+ value: 30.47934263207554
1447
+ - type: ndcg_at_1
1448
+ value: 33.6734693877551
1449
+ - type: ndcg_at_3
1450
+ value: 34.36843900446739
1451
+ - type: ndcg_at_5
1452
+ value: 32.21323786731918
1453
+ - type: ndcg_at_10
1454
+ value: 30.47934263207554
1455
+ - type: ndcg_at_100
1456
+ value: 41.49598869753928
1457
+ - type: ndcg_at_1000
1458
+ value: 52.32963949183662
1459
+ - type: map_at_1
1460
+ value: 3.0159801678718168
1461
+ - type: map_at_3
1462
+ value: 7.13837927642557
1463
+ - type: map_at_5
1464
+ value: 9.274004610363466
1465
+ - type: map_at_10
1466
+ value: 12.957368366814324
1467
+ - type: map_at_100
1468
+ value: 19.3070585127604
1469
+ - type: map_at_1000
1470
+ value: 20.809777161133532
1471
+ - type: precision_at_1
1472
+ value: 34.69387755102041
1473
+ - type: precision_at_3
1474
+ value: 36.054421768707485
1475
+ - type: precision_at_5
1476
+ value: 32.24489795918368
1477
+ - type: precision_at_10
1478
+ value: 27.142857142857146
1479
+ - type: precision_at_100
1480
+ value: 8.326530612244898
1481
+ - type: precision_at_1000
1482
+ value: 1.5755102040816336
1483
+ - type: recall_at_1
1484
+ value: 3.0159801678718168
1485
+ - type: recall_at_3
1486
+ value: 8.321771388428257
1487
+ - type: recall_at_5
1488
+ value: 11.737532394366069
1489
+ - type: recall_at_10
1490
+ value: 19.49315139822179
1491
+ - type: recall_at_100
1492
+ value: 50.937064145519685
1493
+ - type: recall_at_1000
1494
+ value: 83.4358283484675
1495
+ task:
1496
+ type: Retrieval
1497
+ - dataset:
1498
+ config: default
1499
+ name: MTEB ToxicConversationsClassification
1500
  revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
1501
  split: test
1502
  type: mteb/toxic_conversations_50k
 
1513
  type: Classification
1514
  - dataset:
1515
  config: default
1516
+ name: MTEB TweetSentimentExtractionClassification
1517
  revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
1518
  split: test
1519
  type: mteb/tweet_sentiment_extraction
 
1528
  type: Classification
1529
  - dataset:
1530
  config: default
1531
+ name: MTEB TwentyNewsgroupsClustering
1532
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
1533
  split: test
1534
  type: mteb/twentynewsgroups-clustering
 
1543
  type: Clustering
1544
  - dataset:
1545
  config: default
1546
+ name: MTEB TwitterSemEval2015
1547
  revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
1548
  split: test
1549
  type: mteb/twittersemeval2015-pairclassification
 
1616
  type: PairClassification
1617
  - dataset:
1618
  config: default
1619
+ name: MTEB TwitterURLCorpus
1620
  revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
1621
  split: test
1622
  type: mteb/twitterurlcorpus-pairclassification
 
1687
  value: 80.27105660516332
1688
  task:
1689
  type: PairClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690
  ---
1691
 
1692
 
 
1709
  - [ ] Evaluation Pipeline
1710
  - [ ] Technical Report
1711
 
1712
+ We will release the technical report and training data for **BGE-EN-ICL** in the future.
1713
 
1714
 
1715
  ## Usage