Update README.md
Browse files
README.md
CHANGED
@@ -2491,15 +2491,6 @@ model-index:
|
|
2491 |
|
2492 |
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
2493 |
|
2494 |
-
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
|
2495 |
-
- **LLM-based Dense Retrieval**: BGE-EN-Mistral, BGE-Multilingual-Gemma2
|
2496 |
-
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
2497 |
-
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
2498 |
-
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
2499 |
-
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
2500 |
-
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
2501 |
-
|
2502 |
-
|
2503 |
**BGE-EN-Mistral** primarily demonstrates the following capabilities:
|
2504 |
- In-context learning ability: By providing few-shot examples in the query, it can significantly enhance the model's ability to handle new tasks.
|
2505 |
- Outstanding performance: The model has achieved state-of-the-art (SOTA) performance on both BEIR and AIR-Bench.
|
@@ -2519,9 +2510,10 @@ We will release the technical report and training data for **BGE-EN-Mistral** in
|
|
2519 |
|
2520 |
### Using FlagEmbedding
|
2521 |
```
|
2522 |
-
|
|
|
|
|
2523 |
```
|
2524 |
-
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
2525 |
|
2526 |
```python
|
2527 |
from FlagEmbedding import FlagICLModel
|
@@ -2603,8 +2595,8 @@ documents = [
|
|
2603 |
]
|
2604 |
input_texts = queries + documents
|
2605 |
|
2606 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-en-
|
2607 |
-
model = AutoModel.from_pretrained('BAAI/bge-en-
|
2608 |
model.eval()
|
2609 |
|
2610 |
max_length = 4096
|
|
|
2491 |
|
2492 |
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
2493 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2494 |
**BGE-EN-Mistral** primarily demonstrates the following capabilities:
|
2495 |
- In-context learning ability: By providing few-shot examples in the query, it can significantly enhance the model's ability to handle new tasks.
|
2496 |
- Outstanding performance: The model has achieved state-of-the-art (SOTA) performance on both BEIR and AIR-Bench.
|
|
|
2510 |
|
2511 |
### Using FlagEmbedding
|
2512 |
```
|
2513 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
2514 |
+
cd FlagEmbedding
|
2515 |
+
pip install -e .
|
2516 |
```
|
|
|
2517 |
|
2518 |
```python
|
2519 |
from FlagEmbedding import FlagICLModel
|
|
|
2595 |
]
|
2596 |
input_texts = queries + documents
|
2597 |
|
2598 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-en-icl')
|
2599 |
+
model = AutoModel.from_pretrained('BAAI/bge-en-icl')
|
2600 |
model.eval()
|
2601 |
|
2602 |
max_length = 4096
|