Update quickstart
Browse files- README.md +55 -0
- config.json +2 -2
- configuration_bunny_phi.py +253 -0
- modeling_bunny_phi.py +0 -0
README.md
CHANGED
@@ -20,6 +20,61 @@ More details about this model can be found in [GitHub](https://github.com/BAAI-D
|
|
20 |
|
21 |
![comparison](comparison.png)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# License
|
24 |
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
|
25 |
The content of this project itself is licensed under the Apache license 2.0.
|
|
|
20 |
|
21 |
![comparison](comparison.png)
|
22 |
|
23 |
+
# Quickstart
|
24 |
+
|
25 |
+
Here we show a code snippet to show you how to use the model with transformers:
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
import transformers
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
31 |
+
from PIL import Image
|
32 |
+
import warnings
|
33 |
+
|
34 |
+
# disable some warnings
|
35 |
+
transformers.logging.set_verbosity_error()
|
36 |
+
transformers.logging.disable_progress_bar()
|
37 |
+
warnings.filterwarnings('ignore')
|
38 |
+
|
39 |
+
# set device
|
40 |
+
torch.set_default_device('cpu') # or 'cuda'
|
41 |
+
|
42 |
+
# create model
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
'BAAI/bunny-phi-2-siglip',
|
45 |
+
torch_dtype=torch.float16,
|
46 |
+
device_map='auto',
|
47 |
+
trust_remote_code=True)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
49 |
+
'BAAI/bunny-phi-2-siglip',
|
50 |
+
trust_remote_code=True)
|
51 |
+
|
52 |
+
# text prompt
|
53 |
+
prompt = 'Why is the image funny?'
|
54 |
+
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
|
55 |
+
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
56 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
57 |
+
|
58 |
+
# image
|
59 |
+
image = Image.open('example_2.png')
|
60 |
+
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
61 |
+
|
62 |
+
# generate
|
63 |
+
output_ids = model.generate(
|
64 |
+
input_ids,
|
65 |
+
images=image_tensor,
|
66 |
+
max_new_tokens=100,
|
67 |
+
use_cache=True)[0]
|
68 |
+
|
69 |
+
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
70 |
+
```
|
71 |
+
|
72 |
+
Before running the snippet, you need to install the following dependencies:
|
73 |
+
|
74 |
+
```shell
|
75 |
+
pip install torch transformers accelerate
|
76 |
+
```
|
77 |
+
|
78 |
# License
|
79 |
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
|
80 |
The content of this project itself is licensed under the Apache license 2.0.
|
config.json
CHANGED
@@ -5,8 +5,8 @@
|
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "
|
9 |
-
"AutoModelForCausalLM": "
|
10 |
},
|
11 |
"bos_token_id": 50256,
|
12 |
"embd_pdrop": 0.0,
|
|
|
5 |
],
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_bunny_phi.BunnyPhiConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_bunny_phi.BunnyPhiForCausalLM"
|
10 |
},
|
11 |
"bos_token_id": 50256,
|
12 |
"embd_pdrop": 0.0,
|
configuration_bunny_phi.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json",
|
25 |
+
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
|
26 |
+
"microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class PhiConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the Phi
|
35 |
+
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
42 |
+
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`PhiModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
49 |
+
Number of hidden layers in the Transformer decoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
61 |
+
Dropout probability for mlp outputs.
|
62 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the embeddings.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio after computing the attention scores.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
70 |
+
tokens.
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
74 |
+
The epsilon used by the rms normalization layers.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
rope_scaling (`Dict`, *optional*):
|
83 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
84 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
85 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
86 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
87 |
+
these scaling strategies behave:
|
88 |
+
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
89 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
90 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
91 |
+
Percentage of the query and keys which will have rotary embedding.
|
92 |
+
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
94 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
95 |
+
Denotes beginning of sequences token id.
|
96 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
97 |
+
Denotes end of sequences token id.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import PhiModel, PhiConfig
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-1 style configuration
|
105 |
+
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = PhiModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=51200,
|
120 |
+
hidden_size=2048,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=24,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="gelu_new",
|
129 |
+
max_position_embeddings=2048,
|
130 |
+
initializer_range=0.02,
|
131 |
+
layer_norm_eps=1e-5,
|
132 |
+
use_cache=True,
|
133 |
+
tie_word_embeddings=False,
|
134 |
+
rope_theta=10000.0,
|
135 |
+
rope_scaling=None,
|
136 |
+
partial_rotary_factor=0.5,
|
137 |
+
qk_layernorm=False,
|
138 |
+
bos_token_id=1,
|
139 |
+
eos_token_id=2,
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
self.vocab_size = vocab_size
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.intermediate_size = intermediate_size
|
145 |
+
self.num_hidden_layers = num_hidden_layers
|
146 |
+
self.num_attention_heads = num_attention_heads
|
147 |
+
|
148 |
+
if num_key_value_heads is None:
|
149 |
+
num_key_value_heads = num_attention_heads
|
150 |
+
|
151 |
+
self.num_key_value_heads = num_key_value_heads
|
152 |
+
self.resid_pdrop = resid_pdrop
|
153 |
+
self.embd_pdrop = embd_pdrop
|
154 |
+
self.attention_dropout = attention_dropout
|
155 |
+
self.hidden_act = hidden_act
|
156 |
+
self.max_position_embeddings = max_position_embeddings
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.layer_norm_eps = layer_norm_eps
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self.partial_rotary_factor = partial_rotary_factor
|
163 |
+
self.qk_layernorm = qk_layernorm
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
174 |
+
def _rope_scaling_validation(self):
|
175 |
+
"""
|
176 |
+
Validate the `rope_scaling` configuration.
|
177 |
+
"""
|
178 |
+
if self.rope_scaling is None:
|
179 |
+
return
|
180 |
+
|
181 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
182 |
+
raise ValueError(
|
183 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
184 |
+
f"got {self.rope_scaling}"
|
185 |
+
)
|
186 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
187 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
188 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
189 |
+
raise ValueError(
|
190 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
191 |
+
)
|
192 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
193 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
194 |
+
|
195 |
+
|
196 |
+
from typing import Union
|
197 |
+
from transformers import PretrainedConfig
|
198 |
+
import os
|
199 |
+
|
200 |
+
|
201 |
+
class SigLipVisionConfig(PretrainedConfig):
|
202 |
+
model_type = "siglip_vision_model"
|
203 |
+
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
hidden_size=1152,
|
207 |
+
image_mean=(0.5, 0.5, 0.5),
|
208 |
+
intermediate_size=4304,
|
209 |
+
num_hidden_layers=27,
|
210 |
+
num_attention_heads=16,
|
211 |
+
num_channels=3,
|
212 |
+
image_size=384,
|
213 |
+
patch_size=14,
|
214 |
+
hidden_act="gelu_pytorch_tanh",
|
215 |
+
layer_norm_eps=1e-6,
|
216 |
+
attention_dropout=0.0,
|
217 |
+
**kwargs,
|
218 |
+
):
|
219 |
+
super().__init__(**kwargs)
|
220 |
+
|
221 |
+
self.hidden_size = hidden_size
|
222 |
+
self.intermediate_size = intermediate_size
|
223 |
+
self.num_hidden_layers = num_hidden_layers
|
224 |
+
self.num_attention_heads = num_attention_heads
|
225 |
+
self.num_channels = num_channels
|
226 |
+
self.patch_size = patch_size
|
227 |
+
self.image_size = image_size
|
228 |
+
self.attention_dropout = attention_dropout
|
229 |
+
self.layer_norm_eps = layer_norm_eps
|
230 |
+
self.hidden_act = hidden_act
|
231 |
+
self.image_mean = image_mean
|
232 |
+
|
233 |
+
@classmethod
|
234 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
235 |
+
cls._set_token_in_kwargs(kwargs)
|
236 |
+
|
237 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
238 |
+
|
239 |
+
# get the vision config dict if we are loading from SigLipConfig
|
240 |
+
if config_dict.get("model_type") == "siglip":
|
241 |
+
config_dict = config_dict["vision_config"]
|
242 |
+
|
243 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
244 |
+
logger.warning(
|
245 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
246 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
247 |
+
)
|
248 |
+
|
249 |
+
return cls.from_dict(config_dict, **kwargs)
|
250 |
+
|
251 |
+
|
252 |
+
class BunnyPhiConfig(PhiConfig):
|
253 |
+
model_type = "bunny-phi"
|
modeling_bunny_phi.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|