BAAI
/

File size: 9,152 Bytes
3ea6e6b
 
 
 
 
 
 
 
 
 
 
8a98771
3ea6e6b
 
 
 
 
8a98771
 
 
3ea6e6b
 
 
8a98771
3ea6e6b
8a98771
3ea6e6b
8a98771
3ea6e6b
 
 
8a98771
 
 
 
 
 
3ea6e6b
 
8a98771
3ea6e6b
8a98771
3ea6e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a98771
3ea6e6b
 
 
 
 
 
 
8a98771
3ea6e6b
 
 
 
8a98771
 
3ea6e6b
 
 
 
 
16164e7
3ea6e6b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
language:
- en
- zh
library_name: transformers
datasets:
- BAAI/Infinity-Instruct
- BAAI/CCI3-HQ
- mlfoundations/dclm-baseline-1.0
- HuggingFaceFW/fineweb-edu
- HuggingFaceTB/smollm-corpus
pipeline_tag: text-generation
---

# Introduction

The **Aquila-135M** model is a small bilingual(Chinese and English) language model, which is trained using a two-phrase paradigm: pre-training and annealing. 
This model used 1.66TB bilingual tokens in Chinese and English during pre-training phrase and 100B tokens during annealing training phrase. 
In annealing stage, we selected 100B tokens of high-quality bilingual data and finally got our model. 

The **Aquila-135M-Instuct** model is finetuned using [Infinity Instruct](https://huggingface.co./datasets/BAAI/Infinity-Instruct).

The entire training process was conducted using [FlagGems](https://github.com/FlagOpen/FlagGems) based on Triton and parallel training framework named [FlagScale](https://github.com/FlagOpen/FlagScale). 

Also, we have open-sourced all [intermediate checkpoints](https://huggingface.co./BAAI/Aquila-135M-Intermediate).

# News 
- `2024/12/24`:  We have released Aquila-135M and Aquila-135M-Instruct.
- `2024/12/24`:  We have released all datasets and intermediate checkpoints during training. Please feel free to use these models for analysis and experimentation.

# Datasets

We have open-sourced all [bilingual datasets](https://huggingface.co./datasets/BAAI/Aquila-135M-Datasets) during both pre-training and annealing phrases. 
Datasets composition and mix proportions are shown in the figure below.
<img src="./datasets.jpeg" alt="datasets composition" width="800" height="600">

# Evaluation

We followed the same evaluation setting of SmolLM models and evaluated models using the [lighteval](https://github.com/huggingface/lighteval) tool.

The parameter count excludes the embedding part and Aquila-135M and SmolLM2-135M share an identical model structure. Aquila-135M achieves comparable performance on English benchmarks, while Aquila-135M demonstrates significantly better results on Chinese benchmarks.

Among small models with a total parameter count below and around 400M, Aquila-135M maintains a leading position in processing capabilities while significantly enhancing Chinese language proficiency.

| Metrics (0-shot)          | Aquila-135M (Trition) | Aquila-135M (CUDA) | SmolLM-135M | SmolLM2-135M | gpt2-medium-360M | TinyMistral-248M | TinyMistral-248M-2.5 | OpenELM-270M | Wide-Sheared-LLaMA-290M | opt-350m | MobileLLM-350M | pythia-410m | SmolLM-360M | SmolLM2-360M |
|---------------------------|-----------------------|--------------------|-------------|---------------|------------------|------------------|----------------------|--------------|--------------------------|----------|----------------|-------------|-------------|--------------|
| **HellaSwag**             | 41.19                | 41.12             | 41.15       | 42.10         | 37.08           | 27.06           | 26.80               | 45.74        | 24.94                   | 36.08    | 26.28         | 39.22       | 51.73       | 54.66        |
| **ARC (Average)**         | 44.76                | 44.15             | 42.34       | 43.93         | 34.34           | 29.71           | 27.63               | 35.74        | 26.20                   | 31.91    | 27.72         | 35.14       | 49.95       | 53.24        |
| **PIQA**                  | 66.38                | 67.52             | 68.28       | 68.44         | 66.38           | 57.40           | 53.92               | 69.75        | 50.60                   | 64.36    | 50.27         | 67.19       | 71.55       | 71.98        |
| **MMLU (cloze)**          | 31.07                | 30.67             | 30.26       | 31.58         | 27.75           | 25.82           | 25.59               | 27.89        | 24.75                   | 26.58    | 24.86         | 28.88       | 34.32       | 36.09        |
| **CommonsenseQA**         | 32.10                | 31.70             | 32.02       | 32.92         | 31.70           | 24.57           | 21.46               | 35.71        | 16.54                   | 32.10    | 17.53         | 31.45       | 36.61       | 38.74        |
| **TriviaQA**              | 6.65                 | 7.02              | 4.24        | 4.03          | 2.36            | 0.50            | 0.08                | 1.34         | 0.00                    | 1.38     | 0.00          | 2.06        | 9.19        | 16.92        |
| **Winograde**             | 51.07                | 51.70             | 51.22       | 50.99         | 49.49           | 49.25           | 49.01               | 52.41        | 49.72                   | 51.54    | 49.41         | 49.96       | 53.12       | 52.49        |
| **OpenBookQA**            | 34.40                | 34.40             | 33.80       | 34.60         | 31.40           | 29.40           | 27.40               | 30.60        | 26.00                   | 27.80    | 24.80         | 28.40       | 37.20       | 37.00        |
| **GSM8K (5-shot)**        | 2.12                 | 2.12              | 1.00        | 1.52          | 0.00            | 0.00            | 0.00                | 0.00         | 0.00                    | 0.00     | 0.00          | 0.00        | 0.00        | 2.81         |
| **SIQA**                  | 41.81                | 42.32             | 41.15       | 41.45         | 41.30           | 41.86           | 39.71               | 42.73        | 39.76                   | 42.37    | 37.10         | 42.02       | 43.45       | 41.61        |
| **CEval**                 | 29.22                | 29.82             | 28.28       | 26.41         | 25.40           | 25.38           | 26.89               | 26.69        | 26.37                   | 26.67    | 25.68         | 27.97       | 27.66       | 28.51        |
| **CMMLU**                 | 29.48                | 29.63             | 26.01       | 26.66         | 27.20           | 26.67           | 25.57               | 26.25        | 26.33                   | 26.93    | 25.61         | 26.91       | 27.06       | 27.39        |
| **Average-English**       | 35.16                | 35.27             | 34.55       | 35.16         | 32.18           | 28.56           | 27.16               | 34.19        | 25.85                   | 31.41    | 25.80         | 32.43       | 38.71       | 40.55        |
| **Average-Chinese**       | 29.35                | 29.73             | 27.15       | 26.54         | 26.30           | 26.03           | 26.23               | 26.47        | 26.35                   | 26.80    | 25.65         | 27.44       | 27.36       | 27.95        |
| **Average**           | 32.25                | 32.50             | 30.85       | 30.85         | 29.24           | 27.29           | 26.70               | 30.33        | 26.10                   | 29.11    | 25.72         | 29.94       | 33.04       | 34.25        |

For comparison models, evaluations were conducted in a local environment, so the scores may differ slightly from those reported in papers.

# How to use

## Instruct Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "BAAI/Aquila-135M-Instruct"

device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

messages = [{"role": "user", "content": "什么是引力?"}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(input_text)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0]))
## 引力是宇宙中的一个基本力,由多个物体相互作用而产生的。它由能量和质量组成,与引力定律密切相关。

messages = [{"role": "user", "content": "What is gravity?"}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(input_text)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0]))
## Gravity is the force that keeps us on Earth as we orbit it. It pulls objects towards each other with a strength that depends on how far apart they are from each other, and how strong the gravitational pull is. The stronger the object's mass, the greater its gravitational pull.
```

# Future Plan

* We plan to further optimize the composition and proportions of the dataset.
* We plan to further explore the application of small-scale models in specific scenarios.


## **Citation**
If you find this useful, please cite the following work
```
@misc{aquila-135m,
      title={Aquila-135M: A Bilingual Small Language Model in Chinese and English}, 
      author={BAAI},
      year={},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={}, 
}
```