File size: 4,437 Bytes
7cda839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-RD-FIX
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.782608695652174
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-RD-FIX
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co./microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5014
- Accuracy: 0.7826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 0.8571 | 3 | 1.1955 | 0.4565 |
| No log | 1.8571 | 6 | 1.1280 | 0.5 |
| No log | 2.8571 | 9 | 1.0565 | 0.4783 |
| 4.8751 | 3.8571 | 12 | 0.9184 | 0.5870 |
| 4.8751 | 4.8571 | 15 | 0.8208 | 0.5870 |
| 4.8751 | 5.8571 | 18 | 0.7310 | 0.6087 |
| 3.6315 | 6.8571 | 21 | 0.6951 | 0.7174 |
| 3.6315 | 7.8571 | 24 | 0.6772 | 0.7174 |
| 3.6315 | 8.8571 | 27 | 0.6626 | 0.7174 |
| 2.8559 | 9.8571 | 30 | 0.5987 | 0.7826 |
| 2.8559 | 10.8571 | 33 | 0.5431 | 0.8261 |
| 2.8559 | 11.8571 | 36 | 0.6193 | 0.6739 |
| 2.8559 | 12.8571 | 39 | 0.6475 | 0.7174 |
| 2.3617 | 13.8571 | 42 | 0.5725 | 0.7174 |
| 2.3617 | 14.8571 | 45 | 0.5794 | 0.7826 |
| 2.3617 | 15.8571 | 48 | 0.5292 | 0.7826 |
| 2.1506 | 16.8571 | 51 | 0.5988 | 0.7391 |
| 2.1506 | 17.8571 | 54 | 0.6548 | 0.7174 |
| 2.1506 | 18.8571 | 57 | 0.5131 | 0.8261 |
| 1.9498 | 19.8571 | 60 | 0.4700 | 0.8478 |
| 1.9498 | 20.8571 | 63 | 0.5254 | 0.8043 |
| 1.9498 | 21.8571 | 66 | 0.5451 | 0.7826 |
| 1.9498 | 22.8571 | 69 | 0.5304 | 0.7609 |
| 1.422 | 23.8571 | 72 | 0.5105 | 0.8043 |
| 1.422 | 24.8571 | 75 | 0.4685 | 0.7826 |
| 1.422 | 25.8571 | 78 | 0.4875 | 0.8261 |
| 1.3044 | 26.8571 | 81 | 0.5492 | 0.7826 |
| 1.3044 | 27.8571 | 84 | 0.5202 | 0.7826 |
| 1.3044 | 28.8571 | 87 | 0.4737 | 0.8261 |
| 1.2464 | 29.8571 | 90 | 0.4398 | 0.8478 |
| 1.2464 | 30.8571 | 93 | 0.4753 | 0.8043 |
| 1.2464 | 31.8571 | 96 | 0.4913 | 0.8043 |
| 1.2464 | 32.8571 | 99 | 0.5262 | 0.7826 |
| 1.1614 | 33.8571 | 102 | 0.5280 | 0.7826 |
| 1.1614 | 34.8571 | 105 | 0.5252 | 0.7609 |
| 1.1614 | 35.8571 | 108 | 0.5127 | 0.7826 |
| 1.045 | 36.8571 | 111 | 0.5061 | 0.7826 |
| 1.045 | 37.8571 | 114 | 0.5012 | 0.7826 |
| 1.045 | 38.8571 | 117 | 0.5025 | 0.7826 |
| 0.9391 | 39.8571 | 120 | 0.5014 | 0.7826 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|