--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8387096774193549 --- # swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co./microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5167 - Accuracy: 0.8387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.7273 | 2 | 1.4057 | 0.2419 | | No log | 1.8182 | 5 | 1.2100 | 0.4677 | | No log | 2.9091 | 8 | 1.1808 | 0.4516 | | 1.3062 | 4.0 | 11 | 1.0975 | 0.5968 | | 1.3062 | 4.7273 | 13 | 1.0542 | 0.6613 | | 1.3062 | 5.8182 | 16 | 0.9857 | 0.6613 | | 1.3062 | 6.9091 | 19 | 0.9176 | 0.6774 | | 1.0003 | 8.0 | 22 | 0.8761 | 0.6774 | | 1.0003 | 8.7273 | 24 | 0.8540 | 0.6774 | | 1.0003 | 9.8182 | 27 | 0.7777 | 0.6613 | | 0.8096 | 10.9091 | 30 | 0.7498 | 0.6613 | | 0.8096 | 12.0 | 33 | 0.7569 | 0.6613 | | 0.8096 | 12.7273 | 35 | 0.7422 | 0.6774 | | 0.8096 | 13.8182 | 38 | 0.7278 | 0.7097 | | 0.6556 | 14.9091 | 41 | 0.6877 | 0.7258 | | 0.6556 | 16.0 | 44 | 0.6433 | 0.7258 | | 0.6556 | 16.7273 | 46 | 0.6324 | 0.7419 | | 0.6556 | 17.8182 | 49 | 0.6390 | 0.7419 | | 0.5725 | 18.9091 | 52 | 0.6504 | 0.7742 | | 0.5725 | 20.0 | 55 | 0.6145 | 0.7581 | | 0.5725 | 20.7273 | 57 | 0.5824 | 0.7903 | | 0.5057 | 21.8182 | 60 | 0.5476 | 0.8226 | | 0.5057 | 22.9091 | 63 | 0.5413 | 0.8226 | | 0.5057 | 24.0 | 66 | 0.5335 | 0.8226 | | 0.5057 | 24.7273 | 68 | 0.5302 | 0.8226 | | 0.4945 | 25.8182 | 71 | 0.5231 | 0.8226 | | 0.4945 | 26.9091 | 74 | 0.5167 | 0.8387 | | 0.4945 | 28.0 | 77 | 0.5132 | 0.8387 | | 0.4945 | 28.7273 | 79 | 0.5131 | 0.8387 | | 0.4883 | 29.0909 | 80 | 0.5131 | 0.8387 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1