--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.08064516129032258 --- # swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co./microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 8.8834 - Accuracy: 0.0806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.73 | 2 | 8.8834 | 0.0806 | | No log | 1.82 | 5 | 8.8522 | 0.0806 | | No log | 2.91 | 8 | 8.7000 | 0.0806 | | 8.7803 | 4.0 | 11 | 8.2692 | 0.0806 | | 8.7803 | 4.73 | 13 | 7.8836 | 0.0806 | | 8.7803 | 5.82 | 16 | 7.3279 | 0.0806 | | 8.7803 | 6.91 | 19 | 6.7700 | 0.0806 | | 7.5847 | 8.0 | 22 | 6.1880 | 0.0806 | | 7.5847 | 8.73 | 24 | 5.7783 | 0.0806 | | 7.5847 | 9.82 | 27 | 5.2113 | 0.0806 | | 5.7442 | 10.91 | 30 | 4.7163 | 0.0806 | | 5.7442 | 12.0 | 33 | 4.2648 | 0.0806 | | 5.7442 | 12.73 | 35 | 3.9892 | 0.0806 | | 5.7442 | 13.82 | 38 | 3.6134 | 0.0806 | | 4.1747 | 14.91 | 41 | 3.2828 | 0.0806 | | 4.1747 | 16.0 | 44 | 2.9957 | 0.0806 | | 4.1747 | 16.73 | 46 | 2.8259 | 0.0806 | | 4.1747 | 17.82 | 49 | 2.5988 | 0.0806 | | 3.0458 | 18.91 | 52 | 2.4004 | 0.0806 | | 3.0458 | 20.0 | 55 | 2.2272 | 0.0806 | | 3.0458 | 20.73 | 57 | 2.1254 | 0.0806 | | 2.3301 | 21.82 | 60 | 1.9937 | 0.0806 | | 2.3301 | 22.91 | 63 | 1.8860 | 0.0806 | | 2.3301 | 24.0 | 66 | 1.8005 | 0.0806 | | 2.3301 | 24.73 | 68 | 1.7551 | 0.0806 | | 1.9107 | 25.82 | 71 | 1.7021 | 0.0806 | | 1.9107 | 26.91 | 74 | 1.6654 | 0.0806 | | 1.9107 | 28.0 | 77 | 1.6434 | 0.0806 | | 1.9107 | 28.73 | 79 | 1.6362 | 0.0806 | | 1.7061 | 29.09 | 80 | 1.6348 | 0.0806 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0