--- language: - gl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: "Whisper Small GL - Santiago Param\xE9s-Est\xE9vez" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: gl split: test args: 'config: gl, split: test' metrics: - name: Wer type: wer value: 15.233405065386526 --- # Whisper Small GL - Santiago Paramés-Estévez This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3179 - Wer: 15.2334 ## Model description This model was fine-tuned using Sanchit Gandhi's notebook: https://huggingface.co./blog/fine-tune-whisper ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0707 | 2.69 | 1000 | 0.2596 | 16.4915 | | 0.0063 | 5.38 | 2000 | 0.2952 | 15.8583 | | 0.0014 | 8.06 | 3000 | 0.3105 | 15.2624 | | 0.0011 | 10.75 | 4000 | 0.3179 | 15.2334 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2