Atomheart-Father
commited on
Commit
·
8f2f11a
1
Parent(s):
aebe31c
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.95 +/- 17.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e938f10b760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e938f10b7f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e938f10b880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e938f10b910>", "_build": "<function ActorCriticPolicy._build at 0x7e938f10b9a0>", "forward": "<function ActorCriticPolicy.forward at 0x7e938f10ba30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e938f10bac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e938f10bb50>", "_predict": "<function ActorCriticPolicy._predict at 0x7e938f10bbe0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e938f10bc70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e938f10bd00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e938f10bd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e938f0bafc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700656851927151991, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAhhT3Xx267TSMfPkZkFb66Fga9E64CvwAAgD8AAIA/QFcEvscfkz+CGwO/FJoRvzW4cb6LwYS+AAAAAAAAAAAAneS8caFlu1D34LqH/V481T27PBO3Qb0AAIA/AACAP+aMKj1spps/4gPLPa9XAr9YJJA8zhhDPQAAAAAAAAAAs6NRva49lLo23ZEzc2ZyL+XfrjrWA7+zAACAPwAAgD9mLVo9zZCOP4OgiT2ELPe+n8GpPW0rXTsAAAAAAAAAAFpKi72Fk7G5tPpAum/eCrYH3m26whBiOQAAgD8AAIA/mtp2vZxkrT9ZWQG/sbO4vsUB7rxK31m+AAAAAAAAAAAAPoQ8e0aEustGKj0fzq61b2hLOlQuoLQAAIA/AACAPzOl3jxSC4Y/647lPPMcB7/wLJ89zTclPQAAAAAAAAAA2giJvUhRorygBq083ymkPP1mGD76moC9AACAPwAAgD+aKse8ifthPvbmd726/3u+3Hy0vVMSar0AAAAAAAAAAM0czDoUuIK65Psmuj6EHrXbyrW5M8pCOQAAgD8AAIA/DdXIPej2BD+uTC++gHjAvroUP72W9vO8AAAAAAAAAABmkTs9SJusutLfd7qJIlg03/8vOaLWjTkAAIA/AACAP5rT4ryRauM9IclJPoQlV74fEFQ9z1KGPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+/ap5u63CMAWyUS+OMAXSUR0CR16Nke6qbdX2UKGgGR0ByUDUCq6vraAdNFAFoCEdAkdhAVTJhfHV9lChoBkdAcP4dOIqLCWgHS/toCEdAkdhlLOAy23V9lChoBkdAcgIfseGO/GgHS+1oCEdAkdjRY7q6fHV9lChoBkdAcYthWHUMHGgHTQ0BaAhHQJHZgoZydWh1fZQoaAZHQHC1AXqJMxpoB0vsaAhHQJHaoOx0MgF1fZQoaAZHQHAWKBqbjLloB0vtaAhHQJHbNRTCLuR1fZQoaAZHQHA2E92X9itoB00HAWgIR0CR24gw482adX2UKGgGR0BvqP2qT8pDaAdNBAFoCEdAkduc1baAWnV9lChoBkdAUI0X/HYHxGgHS79oCEdAkdwwdjoZAXV9lChoBkdAclC8+iaiK2gHTW4BaAhHQJHdPLW7OFB1fZQoaAZHQG/MIouwostoB0vbaAhHQJHdaHh0heR1fZQoaAZHQHEEdmDlHSZoB00oAWgIR0CR3WhBZ6lddX2UKGgGR0BzrNgDzRQaaAdNCAFoCEdAkd2D5bhWHXV9lChoBkdAc0BBpHqeLGgHTQsBaAhHQJHd00waisZ1fZQoaAZHQHGmK7NB4UxoB0vvaAhHQJHeTgUDdQB1fZQoaAZHQHEzUr9VFQVoB00oAWgIR0CR3s4C6pYLdX2UKGgGR0BxJRD6WPcSaAdL32gIR0CR3x03Ov+wdX2UKGgGR0BwkTZnL7oCaAdL8GgIR0CR3yP7N0NjdX2UKGgGR0BvX4wwj+rEaAdNCgFoCEdAkd+hreqJdnV9lChoBkdAcJ8IIF/x2GgHS+VoCEdAkeDseOn2qXV9lChoBkdAcq9dVvMr3GgHTSQBaAhHQJHhly925hB1fZQoaAZHQHJjWp2ll9VoB0vvaAhHQJHiCZ4Oc2B1fZQoaAZHQHA7XscABDJoB0vjaAhHQJHiW3trsSl1fZQoaAZHQHGcNrCWNWFoB00SAWgIR0CR4r3n6l+FdX2UKGgGR0Bx0odELH+7aAdNEgFoCEdAkeM7D/EOy3V9lChoBkdAcRBay8jAz2gHS+FoCEdAkeRf7vXsgXV9lChoBkdAcGDQHzH0b2gHS/FoCEdAkeSG3azu4XV9lChoBkdAcjQYraufVmgHTQQBaAhHQJHlJHhCMP11fZQoaAZHQG75iQ1aW5ZoB00EAWgIR0CR5SlT3qRmdX2UKGgGR0BzVyncclw+aAdL4GgIR0CR5j8SPEKmdX2UKGgGR0Bx6yfZmI0qaAdNKgFoCEdAkeZUQK8cuXV9lChoBkdAb9lZ5AyEc2gHS/NoCEdAkeZ3DBMzuXV9lChoBkdAcbT4DLbHqGgHTQYBaAhHQJHmggeRxLl1fZQoaAZHQHKQTL4etCBoB00VAWgIR0CR6AUYsNDudX2UKGgGR0Bxlo6Lfk3kaAdNIQFoCEdAkelDMzMzM3V9lChoBkdAbnaEV32VV2gHTQQBaAhHQJHqDTYukDZ1fZQoaAZHQHDMfJiiItVoB0v4aAhHQJHrGcBltj11fZQoaAZHQHGWfX05EMNoB0vxaAhHQJHrQxubZvl1fZQoaAZHQHHSdK28Zk1oB0vpaAhHQJHre28Zk091fZQoaAZHQHO1rGNrCWNoB0v7aAhHQJICZvIfbK11fZQoaAZHQFPzogV45cVoB0unaAhHQJICYESuhbp1fZQoaAZHQHIY2+fywwFoB002AWgIR0CSApO/cnE3dX2UKGgGR0BzP5fZ26kJaAdL9GgIR0CSAxruYx+KdX2UKGgGR0Bv5/VRUFSsaAdNBAFoCEdAkgNxXCCSR3V9lChoBkdAcfJeAd4mkWgHS/loCEdAkgOng9/z8XV9lChoBkdAcBnNlAeJYWgHS/1oCEdAkgPBgy/KyXV9lChoBkdAUZzGn4wh4mgHS65oCEdAkgPVOGj9GnV9lChoBkdAcWy59Vmz0GgHS+JoCEdAkgPkBbOeKHV9lChoBkdAc2d3bVSXMWgHS+doCEdAkgP0AYHgP3V9lChoBkdAcrUySFGoaWgHTQoBaAhHQJIE0bo8p1B1fZQoaAZHQHK8GCuloDhoB00aAWgIR0CSB2sg+yJLdX2UKGgGR0BvacpEx7AtaAdNBwFoCEdAkgd/vfCQ93V9lChoBkdAbkQmzByjpWgHS+1oCEdAkgeLCrLhaXV9lChoBkdAcRSmUW2w3mgHS+1oCEdAkgevzJ6ppHV9lChoBkdAcKM9ph4MW2gHS/FoCEdAkgf+z+m3v3V9lChoBkdAcFKhCtzS1GgHS9xoCEdAkghAjlgc+HV9lChoBkdAckPBHkLhJmgHS91oCEdAkghQDvE0i3V9lChoBkdAcEsMGX5WR2gHS99oCEdAkgiGAXl8xHV9lChoBkdAcCDqKP4mC2gHS+VoCEdAkgm+FL39JnV9lChoBkdAcSjK+zt1IWgHS+VoCEdAkgn06T4cm3V9lChoBkdAcOvuIRAbAGgHS/hoCEdAkgqv4M4LkXV9lChoBkdAcFry6MBIWmgHTRABaAhHQJILTo3aSLZ1fZQoaAZHQHKwltbcGkhoB00lAWgIR0CSC2szVMEidX2UKGgGR0BwIf+BH09RaAdL/GgIR0CSDArGza9LdX2UKGgGR0BxGQX9BKL9aAdNNQFoCEdAkgw+CoS+QHV9lChoBkdAcYwVOsT37GgHTV0BaAhHQJIMpwT/Q0J1fZQoaAZHQHMjTkQwsXloB0vzaAhHQJIOaRPoFFF1fZQoaAZHQHB4t/axoqVoB0v9aAhHQJIOnQdCE6F1fZQoaAZHQHOSCTEBKcxoB00GAWgIR0CSDvKLKmsOdX2UKGgGR0BwlNq33HrAaAdNAAFoCEdAkg84CU5dW3V9lChoBkdAcy7NwR5C4WgHS/poCEdAkg9fzvqkdnV9lChoBkdAcHKJp35eq2gHS/FoCEdAkg9ZU96kZnV9lChoBkdAcE05paiblWgHTQcBaAhHQJIPq8274BV1fZQoaAZHQHFTGzfJmuloB0voaAhHQJIQe/oJRfp1fZQoaAZHQG3aFhPTG5toB0v1aAhHQJIQo5PuXu51fZQoaAZHQHKSamj0tiBoB0vZaAhHQJIRZp48lol1fZQoaAZHQHFs7kbPyCpoB0v8aAhHQJIRqvStvGZ1fZQoaAZHQHASp1vES/VoB0v/aAhHQJITFcu8K5V1fZQoaAZHQHIQ7cCYCyRoB0v4aAhHQJITjpTuOS51fZQoaAZHQHKsb83uNPxoB00wAWgIR0CSE9PIGQjmdX2UKGgGR0BxiQvexfOVaAdNEwFoCEdAkhPrV4HHFXV9lChoBkdAcQUZmqYJFGgHS+9oCEdAkhZ8q4H5anV9lChoBkdAcTdhc7hegWgHTQMBaAhHQJIXQSoOx0N1fZQoaAZHQHH+BXXAdn1oB0v+aAhHQJIXgPOIInl1fZQoaAZHQHFiXhjvuw5oB00+AWgIR0CSGUYtg8bJdX2UKGgGR0BzQ1XS0BwNaAdNVAFoCEdAkhlblq8DjnV9lChoBkdAc0FUqQRwqGgHTVoBaAhHQJIZVghKUV11fZQoaAZHQHDQCLl3hXNoB00cAWgIR0CSGep2ECeVdX2UKGgGR0Bx9JoduHeraAdNIgFoCEdAkhnsD4gzQHV9lChoBkdAcusuMMqjJ2gHTQ4BaAhHQJIaVmVZ9ux1fZQoaAZHQGmE9kBjnV5oB016AmgIR0CSGuUHY6GQdX2UKGgGR0Bv02rGR3eOaAdNMAFoCEdAkhux19v0iHV9lChoBkdAcXZjtXxOL2gHTZsBaAhHQJIb45p8F6l1fZQoaAZHQG22V7IDHOtoB00DAWgIR0CSHI8s+V1PdX2UKGgGR0BxNc0SAYpEaAdNXwFoCEdAkh8ygGr0a3V9lChoBkdAcwZ5ZbILgGgHS/poCEdAkh9zsD4gzXV9lChoBkdAcgTnvDxb0WgHTXsBaAhHQJIfoXrMTvl1fZQoaAZHQEMD/Mnqmj1oB0vOaAhHQJIf14fOlft1fZQoaAZHQHIC/8dgfEJoB0vbaAhHQJIgPS1E3Kl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1db0817ae95306900ac485ef5103d17a989abf9ea550a5c1f9d3d926fb4b801
|
3 |
+
size 147986
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e938f10b760>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e938f10b7f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e938f10b880>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e938f10b910>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e938f10b9a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e938f10ba30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e938f10bac0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e938f10bb50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e938f10bbe0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e938f10bc70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e938f10bd00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e938f10bd90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e938f0bafc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1700656851927151991,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAhhT3Xx267TSMfPkZkFb66Fga9E64CvwAAgD8AAIA/QFcEvscfkz+CGwO/FJoRvzW4cb6LwYS+AAAAAAAAAAAAneS8caFlu1D34LqH/V481T27PBO3Qb0AAIA/AACAP+aMKj1spps/4gPLPa9XAr9YJJA8zhhDPQAAAAAAAAAAs6NRva49lLo23ZEzc2ZyL+XfrjrWA7+zAACAPwAAgD9mLVo9zZCOP4OgiT2ELPe+n8GpPW0rXTsAAAAAAAAAAFpKi72Fk7G5tPpAum/eCrYH3m26whBiOQAAgD8AAIA/mtp2vZxkrT9ZWQG/sbO4vsUB7rxK31m+AAAAAAAAAAAAPoQ8e0aEustGKj0fzq61b2hLOlQuoLQAAIA/AACAPzOl3jxSC4Y/647lPPMcB7/wLJ89zTclPQAAAAAAAAAA2giJvUhRorygBq083ymkPP1mGD76moC9AACAPwAAgD+aKse8ifthPvbmd726/3u+3Hy0vVMSar0AAAAAAAAAAM0czDoUuIK65Psmuj6EHrXbyrW5M8pCOQAAgD8AAIA/DdXIPej2BD+uTC++gHjAvroUP72W9vO8AAAAAAAAAABmkTs9SJusutLfd7qJIlg03/8vOaLWjTkAAIA/AACAP5rT4ryRauM9IclJPoQlV74fEFQ9z1KGPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+/ap5u63CMAWyUS+OMAXSUR0CR16Nke6qbdX2UKGgGR0ByUDUCq6vraAdNFAFoCEdAkdhAVTJhfHV9lChoBkdAcP4dOIqLCWgHS/toCEdAkdhlLOAy23V9lChoBkdAcgIfseGO/GgHS+1oCEdAkdjRY7q6fHV9lChoBkdAcYthWHUMHGgHTQ0BaAhHQJHZgoZydWh1fZQoaAZHQHC1AXqJMxpoB0vsaAhHQJHaoOx0MgF1fZQoaAZHQHAWKBqbjLloB0vtaAhHQJHbNRTCLuR1fZQoaAZHQHA2E92X9itoB00HAWgIR0CR24gw482adX2UKGgGR0BvqP2qT8pDaAdNBAFoCEdAkduc1baAWnV9lChoBkdAUI0X/HYHxGgHS79oCEdAkdwwdjoZAXV9lChoBkdAclC8+iaiK2gHTW4BaAhHQJHdPLW7OFB1fZQoaAZHQG/MIouwostoB0vbaAhHQJHdaHh0heR1fZQoaAZHQHEEdmDlHSZoB00oAWgIR0CR3WhBZ6lddX2UKGgGR0BzrNgDzRQaaAdNCAFoCEdAkd2D5bhWHXV9lChoBkdAc0BBpHqeLGgHTQsBaAhHQJHd00waisZ1fZQoaAZHQHGmK7NB4UxoB0vvaAhHQJHeTgUDdQB1fZQoaAZHQHEzUr9VFQVoB00oAWgIR0CR3s4C6pYLdX2UKGgGR0BxJRD6WPcSaAdL32gIR0CR3x03Ov+wdX2UKGgGR0BwkTZnL7oCaAdL8GgIR0CR3yP7N0NjdX2UKGgGR0BvX4wwj+rEaAdNCgFoCEdAkd+hreqJdnV9lChoBkdAcJ8IIF/x2GgHS+VoCEdAkeDseOn2qXV9lChoBkdAcq9dVvMr3GgHTSQBaAhHQJHhly925hB1fZQoaAZHQHJjWp2ll9VoB0vvaAhHQJHiCZ4Oc2B1fZQoaAZHQHA7XscABDJoB0vjaAhHQJHiW3trsSl1fZQoaAZHQHGcNrCWNWFoB00SAWgIR0CR4r3n6l+FdX2UKGgGR0Bx0odELH+7aAdNEgFoCEdAkeM7D/EOy3V9lChoBkdAcRBay8jAz2gHS+FoCEdAkeRf7vXsgXV9lChoBkdAcGDQHzH0b2gHS/FoCEdAkeSG3azu4XV9lChoBkdAcjQYraufVmgHTQQBaAhHQJHlJHhCMP11fZQoaAZHQG75iQ1aW5ZoB00EAWgIR0CR5SlT3qRmdX2UKGgGR0BzVyncclw+aAdL4GgIR0CR5j8SPEKmdX2UKGgGR0Bx6yfZmI0qaAdNKgFoCEdAkeZUQK8cuXV9lChoBkdAb9lZ5AyEc2gHS/NoCEdAkeZ3DBMzuXV9lChoBkdAcbT4DLbHqGgHTQYBaAhHQJHmggeRxLl1fZQoaAZHQHKQTL4etCBoB00VAWgIR0CR6AUYsNDudX2UKGgGR0Bxlo6Lfk3kaAdNIQFoCEdAkelDMzMzM3V9lChoBkdAbnaEV32VV2gHTQQBaAhHQJHqDTYukDZ1fZQoaAZHQHDMfJiiItVoB0v4aAhHQJHrGcBltj11fZQoaAZHQHGWfX05EMNoB0vxaAhHQJHrQxubZvl1fZQoaAZHQHHSdK28Zk1oB0vpaAhHQJHre28Zk091fZQoaAZHQHO1rGNrCWNoB0v7aAhHQJICZvIfbK11fZQoaAZHQFPzogV45cVoB0unaAhHQJICYESuhbp1fZQoaAZHQHIY2+fywwFoB002AWgIR0CSApO/cnE3dX2UKGgGR0BzP5fZ26kJaAdL9GgIR0CSAxruYx+KdX2UKGgGR0Bv5/VRUFSsaAdNBAFoCEdAkgNxXCCSR3V9lChoBkdAcfJeAd4mkWgHS/loCEdAkgOng9/z8XV9lChoBkdAcBnNlAeJYWgHS/1oCEdAkgPBgy/KyXV9lChoBkdAUZzGn4wh4mgHS65oCEdAkgPVOGj9GnV9lChoBkdAcWy59Vmz0GgHS+JoCEdAkgPkBbOeKHV9lChoBkdAc2d3bVSXMWgHS+doCEdAkgP0AYHgP3V9lChoBkdAcrUySFGoaWgHTQoBaAhHQJIE0bo8p1B1fZQoaAZHQHK8GCuloDhoB00aAWgIR0CSB2sg+yJLdX2UKGgGR0BvacpEx7AtaAdNBwFoCEdAkgd/vfCQ93V9lChoBkdAbkQmzByjpWgHS+1oCEdAkgeLCrLhaXV9lChoBkdAcRSmUW2w3mgHS+1oCEdAkgevzJ6ppHV9lChoBkdAcKM9ph4MW2gHS/FoCEdAkgf+z+m3v3V9lChoBkdAcFKhCtzS1GgHS9xoCEdAkghAjlgc+HV9lChoBkdAckPBHkLhJmgHS91oCEdAkghQDvE0i3V9lChoBkdAcEsMGX5WR2gHS99oCEdAkgiGAXl8xHV9lChoBkdAcCDqKP4mC2gHS+VoCEdAkgm+FL39JnV9lChoBkdAcSjK+zt1IWgHS+VoCEdAkgn06T4cm3V9lChoBkdAcOvuIRAbAGgHS/hoCEdAkgqv4M4LkXV9lChoBkdAcFry6MBIWmgHTRABaAhHQJILTo3aSLZ1fZQoaAZHQHKwltbcGkhoB00lAWgIR0CSC2szVMEidX2UKGgGR0BwIf+BH09RaAdL/GgIR0CSDArGza9LdX2UKGgGR0BxGQX9BKL9aAdNNQFoCEdAkgw+CoS+QHV9lChoBkdAcYwVOsT37GgHTV0BaAhHQJIMpwT/Q0J1fZQoaAZHQHMjTkQwsXloB0vzaAhHQJIOaRPoFFF1fZQoaAZHQHB4t/axoqVoB0v9aAhHQJIOnQdCE6F1fZQoaAZHQHOSCTEBKcxoB00GAWgIR0CSDvKLKmsOdX2UKGgGR0BwlNq33HrAaAdNAAFoCEdAkg84CU5dW3V9lChoBkdAcy7NwR5C4WgHS/poCEdAkg9fzvqkdnV9lChoBkdAcHKJp35eq2gHS/FoCEdAkg9ZU96kZnV9lChoBkdAcE05paiblWgHTQcBaAhHQJIPq8274BV1fZQoaAZHQHFTGzfJmuloB0voaAhHQJIQe/oJRfp1fZQoaAZHQG3aFhPTG5toB0v1aAhHQJIQo5PuXu51fZQoaAZHQHKSamj0tiBoB0vZaAhHQJIRZp48lol1fZQoaAZHQHFs7kbPyCpoB0v8aAhHQJIRqvStvGZ1fZQoaAZHQHASp1vES/VoB0v/aAhHQJITFcu8K5V1fZQoaAZHQHIQ7cCYCyRoB0v4aAhHQJITjpTuOS51fZQoaAZHQHKsb83uNPxoB00wAWgIR0CSE9PIGQjmdX2UKGgGR0BxiQvexfOVaAdNEwFoCEdAkhPrV4HHFXV9lChoBkdAcQUZmqYJFGgHS+9oCEdAkhZ8q4H5anV9lChoBkdAcTdhc7hegWgHTQMBaAhHQJIXQSoOx0N1fZQoaAZHQHH+BXXAdn1oB0v+aAhHQJIXgPOIInl1fZQoaAZHQHFiXhjvuw5oB00+AWgIR0CSGUYtg8bJdX2UKGgGR0BzQ1XS0BwNaAdNVAFoCEdAkhlblq8DjnV9lChoBkdAc0FUqQRwqGgHTVoBaAhHQJIZVghKUV11fZQoaAZHQHDQCLl3hXNoB00cAWgIR0CSGep2ECeVdX2UKGgGR0Bx9JoduHeraAdNIgFoCEdAkhnsD4gzQHV9lChoBkdAcusuMMqjJ2gHTQ4BaAhHQJIaVmVZ9ux1fZQoaAZHQGmE9kBjnV5oB016AmgIR0CSGuUHY6GQdX2UKGgGR0Bv02rGR3eOaAdNMAFoCEdAkhux19v0iHV9lChoBkdAcXZjtXxOL2gHTZsBaAhHQJIb45p8F6l1fZQoaAZHQG22V7IDHOtoB00DAWgIR0CSHI8s+V1PdX2UKGgGR0BxNc0SAYpEaAdNXwFoCEdAkh8ygGr0a3V9lChoBkdAcwZ5ZbILgGgHS/poCEdAkh9zsD4gzXV9lChoBkdAcgTnvDxb0WgHTXsBaAhHQJIfoXrMTvl1fZQoaAZHQEMD/Mnqmj1oB0vOaAhHQJIf14fOlft1fZQoaAZHQHIC/8dgfEJoB0vbaAhHQJIgPS1E3Kl1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c278d813a68cb16eb6a67793247562a9b231a07e714aa0876db29a998c7064c
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8340da4ab85f0738ee20da453b31ec9336303259befc09ca35be224ce784b917
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (174 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.94934973264725, "std_reward": 17.359555507849382, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-22T13:07:27.735030"}
|