File size: 2,597 Bytes
21c8391
 
 
 
 
 
 
 
 
 
 
 
 
 
20e3ee1
 
 
 
 
 
 
 
 
 
21c8391
 
03c638b
 
561748e
 
 
 
 
 
 
 
 
 
 
 
 
3224843
561748e
03c638b
 
 
 
 
 
 
 
 
3ad2c2b
3224843
03c638b
 
 
 
 
 
 
 
 
 
 
 
 
e2ea8f0
3ad2c2b
03c638b
 
 
e2ea8f0
 
 
 
 
561748e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: openrail
inference:
  parameters:
    temperature: 0.7
    max_length: 24
datasets:
- Ateeqq/Title-Keywords-SEO
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
tags:
- text-generation-inference
widget:
  - text: >-
      generate title: Importance, Dataset, AI
    example_title: Example 1
  - text: >-
      generate title: Amazon, Product, Business
    example_title: Example 2
  - text: >-
      generate title: History, Computer, Software
    example_title: Example 3
---

# Generate Title using Keywords

Title Generator is an online tool that helps you create great titles for your content. By entering specific keywords or information about content, you receive topic suggestions that increase content appeal.

Developed by https://exnrt.com

- Fine Tuned: T5-Base
- Parameters: 223M
- Train Dataset Length: 10,000
- Validation Dataset Length: 2000
- Batch Size: 1
- Epochs: 2
- Train Loss: 1.6578
- Validation Loss: 1.8115

You can also use `t5-small` (77M params) available in [mini](https://huggingface.co./Ateeqq/keywords-title-generator/tree/main/mini) folder.

## How to use

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("Ateeqq/keywords-title-generator", token='your_token')
model = AutoModelForSeq2SeqLM.from_pretrained("Ateeqq/keywords-title-generator", token='your_token').to(device)

def generate_title(keywords):
    input_ids = tokenizer(keywords, return_tensors="pt", padding="longest", truncation=True, max_length=24).input_ids.to(device)
    outputs = model.generate(
        input_ids,
        num_beams=5,
        num_beam_groups=5,
        num_return_sequences=5,
        repetition_penalty=10.0,
        diversity_penalty=3.0,
        no_repeat_ngram_size=2,
        temperature=0.7,
        max_length=24
    )
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)

keywords = 'model, Fine-tuning, Machine Learning'
generate_title(keywords)
```
### Output:
```
['How to Fine-tune Your Machine Learning Model for Better Performance',
 'Fine-tuning your Machine Learning model with a simple technique',
 'Using fine tuning to fine-tune your machine learning model',
 'Machine Learning: Fine-tuning your model to fit the needs of machine learning',
 'The Art of Fine-Tuning Your Machine Learning Model']
```

### Disclaimer:

It grants a non-exclusive, non-transferable license to use the this model. This means you can't freely share it with others or sell the model itself. However you can use the model for commercial purposes.