Update README.md
Browse files
README.md
CHANGED
@@ -20,3 +20,336 @@ base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
|
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
23 |
+
```python
|
24 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
25 |
+
```
|
26 |
+
|
27 |
+
```python
|
28 |
+
!pip install --upgrade pip
|
29 |
+
```
|
30 |
+
|
31 |
+
```python
|
32 |
+
!pip install --no-deps "xformers<0.0.26" "trl<0.9.0" peft accelerate bitsandbytes
|
33 |
+
```
|
34 |
+
|
35 |
+
```python
|
36 |
+
from unsloth import FastLanguageModel
|
37 |
+
import torch
|
38 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
39 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
40 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
41 |
+
|
42 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
43 |
+
fourbit_models = [
|
44 |
+
"unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 15 trillion tokens model 2x faster!
|
45 |
+
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
46 |
+
"unsloth/Meta-Llama-3.1-70B-bnb-4bit",
|
47 |
+
"unsloth/Meta-Llama-3.1-405B-bnb-4bit", # We also uploaded 4bit for 405b!
|
48 |
+
"unsloth/Mistral-Nemo-Base-2407-bnb-4bit", # New Mistral 12b 2x faster!
|
49 |
+
"unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit",
|
50 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # Mistral v3 2x faster!
|
51 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
52 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!d
|
53 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
54 |
+
"unsloth/gemma-2-9b-bnb-4bit",
|
55 |
+
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
|
56 |
+
] # More models at https://huggingface.co/unsloth
|
57 |
+
|
58 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
59 |
+
model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
60 |
+
max_seq_length = max_seq_length,
|
61 |
+
dtype = dtype,
|
62 |
+
load_in_4bit = load_in_4bit,
|
63 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
64 |
+
)
|
65 |
+
```
|
66 |
+
|
67 |
+
```python
|
68 |
+
# ========================================================
|
69 |
+
# Test before training
|
70 |
+
# ========================================================
|
71 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
72 |
+
|
73 |
+
### Instruction:
|
74 |
+
{}
|
75 |
+
|
76 |
+
### Input:
|
77 |
+
{}
|
78 |
+
|
79 |
+
### Response:
|
80 |
+
{}"""
|
81 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
82 |
+
inputs = tokenizer(
|
83 |
+
[
|
84 |
+
alpaca_prompt.format(
|
85 |
+
"请把现代汉语翻译成古文", # instruction
|
86 |
+
"其品行廉正,所以至死也不放松对自己的要求。", # input
|
87 |
+
"", # output - leave this blank for generation!
|
88 |
+
)
|
89 |
+
], return_tensors = "pt").to("cuda")
|
90 |
+
|
91 |
+
from transformers import TextStreamer
|
92 |
+
text_streamer = TextStreamer(tokenizer)
|
93 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
94 |
+
```
|
95 |
+
|
96 |
+
```python
|
97 |
+
model = FastLanguageModel.get_peft_model(
|
98 |
+
model,
|
99 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
100 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
101 |
+
"gate_proj", "up_proj", "down_proj",],
|
102 |
+
lora_alpha = 16,
|
103 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
104 |
+
bias = "none", # Supports any, but = "none" is optimized
|
105 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
106 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
107 |
+
random_state = 3407,
|
108 |
+
use_rslora = False, # We support rank stabilized LoRA
|
109 |
+
loftq_config = None, # And LoftQ
|
110 |
+
)
|
111 |
+
```
|
112 |
+
|
113 |
+
```python
|
114 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
115 |
+
|
116 |
+
### Instruction:
|
117 |
+
{}
|
118 |
+
|
119 |
+
### Input:
|
120 |
+
{}
|
121 |
+
|
122 |
+
### Response:
|
123 |
+
{}"""
|
124 |
+
|
125 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
126 |
+
def formatting_prompts_func(examples):
|
127 |
+
instructions = examples["instruction"]
|
128 |
+
inputs = examples["input"]
|
129 |
+
outputs = examples["output"]
|
130 |
+
texts = []
|
131 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
132 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
133 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
134 |
+
texts.append(text)
|
135 |
+
return { "text" : texts, }
|
136 |
+
pass
|
137 |
+
|
138 |
+
from datasets import load_dataset
|
139 |
+
dataset = load_dataset("Asuncom/shiji-qishiliezhuan", split = "train")
|
140 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
141 |
+
```
|
142 |
+
|
143 |
+
```python
|
144 |
+
from trl import SFTTrainer
|
145 |
+
from transformers import TrainingArguments
|
146 |
+
from unsloth import is_bfloat16_supported
|
147 |
+
|
148 |
+
trainer = SFTTrainer(
|
149 |
+
model = model,
|
150 |
+
tokenizer = tokenizer,
|
151 |
+
train_dataset = dataset,
|
152 |
+
dataset_text_field = "text",
|
153 |
+
max_seq_length = max_seq_length,
|
154 |
+
dataset_num_proc = 2,
|
155 |
+
packing = False, # Can make training 5x faster for short sequences.
|
156 |
+
args = TrainingArguments(
|
157 |
+
per_device_train_batch_size = 2,
|
158 |
+
gradient_accumulation_steps = 4,
|
159 |
+
warmup_steps = 5,
|
160 |
+
# num_train_epochs = 1, # Set this for 1 full training run.
|
161 |
+
max_steps = 100,
|
162 |
+
learning_rate = 2e-4,
|
163 |
+
fp16 = not is_bfloat16_supported(),
|
164 |
+
bf16 = is_bfloat16_supported(),
|
165 |
+
logging_steps = 1,
|
166 |
+
optim = "adamw_8bit",
|
167 |
+
weight_decay = 0.01,
|
168 |
+
lr_scheduler_type = "linear",
|
169 |
+
seed = 3407,
|
170 |
+
output_dir = "outputs",
|
171 |
+
),
|
172 |
+
)
|
173 |
+
```
|
174 |
+
|
175 |
+
```python
|
176 |
+
#@title Show current memory stats
|
177 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
178 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
179 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
180 |
+
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
181 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
182 |
+
```
|
183 |
+
|
184 |
+
```python
|
185 |
+
import wandb
|
186 |
+
|
187 |
+
# 初始化一个离线模式的W&B运行
|
188 |
+
wandb.init(mode="offline", project="asuncom", entity="asuncom")
|
189 |
+
```
|
190 |
+
|
191 |
+
```python
|
192 |
+
trainer_stats = trainer.train()
|
193 |
+
```
|
194 |
+
|
195 |
+
```python
|
196 |
+
#@title Show final memory and time stats
|
197 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
198 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
199 |
+
used_percentage = round(used_memory /max_memory*100, 3)
|
200 |
+
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
201 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
202 |
+
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
203 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
204 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
205 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
206 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
207 |
+
```
|
208 |
+
|
209 |
+
```python
|
210 |
+
# alpaca_prompt = Copied from above
|
211 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
212 |
+
inputs = tokenizer(
|
213 |
+
[
|
214 |
+
alpaca_prompt.format(
|
215 |
+
"请把现代汉语翻译成古文", # instruction
|
216 |
+
"其品行廉正,所以至死也不放松对自己的要求。", # input
|
217 |
+
"", # output - leave this blank for generation!
|
218 |
+
)
|
219 |
+
], return_tensors = "pt").to("cuda")
|
220 |
+
|
221 |
+
from transformers import TextStreamer
|
222 |
+
text_streamer = TextStreamer(tokenizer)
|
223 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
224 |
+
```
|
225 |
+
|
226 |
+
```python
|
227 |
+
model.save_pretrained("lora_model") # Local saving
|
228 |
+
tokenizer.save_pretrained("lora_model")
|
229 |
+
model.push_to_hub("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", token = "hf_huggingface的密钥NeKb") # Online saving
|
230 |
+
tokenizer.push_to_hub("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", token = "hf_huggingface的密钥saving
|
231 |
+
```
|
232 |
+
|
233 |
+
```python
|
234 |
+
if False:
|
235 |
+
from unsloth import FastLanguageModel
|
236 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
237 |
+
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
238 |
+
max_seq_length = max_seq_length,
|
239 |
+
dtype = dtype,
|
240 |
+
load_in_4bit = load_in_4bit,
|
241 |
+
)
|
242 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
243 |
+
|
244 |
+
# alpaca_prompt = You MUST copy from above!
|
245 |
+
|
246 |
+
inputs = tokenizer(
|
247 |
+
[
|
248 |
+
alpaca_prompt.format(
|
249 |
+
"What is a famous tall tower in Paris?", # instruction
|
250 |
+
"", # input
|
251 |
+
"", # output - leave this blank for generation!
|
252 |
+
)
|
253 |
+
], return_tensors = "pt").to("cuda")
|
254 |
+
|
255 |
+
from transformers import TextStreamer
|
256 |
+
text_streamer = TextStreamer(tokenizer)
|
257 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
258 |
+
```
|
259 |
+
|
260 |
+
```python
|
261 |
+
# Merge to 16bit
|
262 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
|
263 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, save_method = "merged_16bit", token = "hf_huggingface的密钥NeKb")
|
264 |
+
|
265 |
+
# Merge to 4bit
|
266 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
|
267 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, save_method = "merged_4bit", token = "hf_huggingface的密钥oRA adapters
|
268 |
+
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
269 |
+
if False: model.push_to_hub_merged("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, save_method = "lora", token = "hf_huggingface的密钥
|
270 |
+
```
|
271 |
+
|
272 |
+
```python
|
273 |
+
# Save to 8bit Q8_0
|
274 |
+
if False: model.save_pretrained_gguf("model", tokenizer,)
|
275 |
+
# Remember to go to https://huggingface.co/settings/tokens for a token!
|
276 |
+
# And change hf to your username!
|
277 |
+
if False: model.push_to_hub_gguf("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, token = "")
|
278 |
+
|
279 |
+
# Save to 16bit GGUF
|
280 |
+
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
|
281 |
+
if False: model.push_to_hub_gguf("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, quantization_method = "f16", token = "")
|
282 |
+
|
283 |
+
# Save to q4_k_m GGUF
|
284 |
+
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
|
285 |
+
if True: model.push_to_hub_gguf("Asuncom/Llama-3.1-8B-bnb-4bit-shiji", tokenizer, quantization_method = "q4_k_m", token = "hf_xxxxx")
|
286 |
+
|
287 |
+
# Save to multiple GGUF options - much faster if you want multiple!
|
288 |
+
if False:
|
289 |
+
model.push_to_hub_gguf(
|
290 |
+
"Asuncom/Llama-3.1-8B-bnb-4bit-shiji", # Change hf to your username!
|
291 |
+
tokenizer,
|
292 |
+
quantization_method = ["q4_k_m", "q8_0", "q5_k_m",],
|
293 |
+
token = "hf_huggingface的密钥NeKb", # Get a token at https://huggingface.co/settings/tokens
|
294 |
+
)
|
295 |
+
```
|
296 |
+
|
297 |
+
```python
|
298 |
+
model.push_to_hub_gguf(
|
299 |
+
"Asuncom/Llama-3.1-8B-bnb-4bit-shiji", # Change hf to your username!
|
300 |
+
tokenizer,
|
301 |
+
quantization_method = ["q4_k_m", "q8_0", "q5_k_m",],
|
302 |
+
token = "hf_huggingface的密钥NeKb", # Get a token at https://huggingface.co/settings/tokens
|
303 |
+
)
|
304 |
+
```
|
305 |
+
|
306 |
+
```
|
307 |
+
[ 279/ 292] blk.30.attn_output.weight - [ 4096, 4096, 1, 1], type = f16, converting to q5_K .. size = 32.00 MiB -> 11.00 MiB
|
308 |
+
[ 280/ 292] blk.30.attn_q.weight - [ 4096, 4096, 1, 1], type = f16, converting to q5_K .. size = 32.00 MiB -> 11.00 MiB
|
309 |
+
[ 281/ 292] blk.30.attn_v.weight - [ 4096, 1024, 1, 1], type = f16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
|
310 |
+
[ 282/ 292] blk.31.ffn_gate.weight - [ 4096, 14336, 1, 1], type = f16, converting to q5_K .. size = 112.00 MiB -> 38.50 MiB
|
311 |
+
[ 283/ 292] blk.31.ffn_up.weight - [ 4096, 14336, 1, 1], type = f16, converting to q5_K .. size = 112.00 MiB -> 38.50 MiB
|
312 |
+
[ 284/ 292] blk.31.attn_k.weight - [ 4096, 1024, 1, 1], type = f16, converting to q5_K .. size = 8.00 MiB -> 2.75 MiB
|
313 |
+
[ 285/ 292] blk.31.attn_output.weight - [ 4096, 4096, 1, 1], type = f16, converting to q5_K .. size = 32.00 MiB -> 11.00 MiB
|
314 |
+
[ 286/ 292] blk.31.attn_q.weight - [ 4096, 4096, 1, 1], type = f16, converting to q5_K .. size = 32.00 MiB -> 11.00 MiB
|
315 |
+
[ 287/ 292] blk.31.attn_v.weight - [ 4096, 1024, 1, 1], type = f16, converting to q6_K .. size = 8.00 MiB -> 3.28 MiB
|
316 |
+
[ 288/ 292] output.weight - [ 4096, 128256, 1, 1], type = f16, converting to q6_K .. size = 1002.00 MiB -> 410.98 MiB
|
317 |
+
[ 289/ 292] blk.31.attn_norm.weight - [ 4096, 1, 1, 1], type = f32, size = 0.016 MB
|
318 |
+
[ 290/ 292] blk.31.ffn_down.weight - [14336, 4096, 1, 1], type = f16, converting to q6_K .. size = 112.00 MiB -> 45.94 MiB
|
319 |
+
[ 291/ 292] blk.31.ffn_norm.weight - [ 4096, 1, 1, 1], type = f32, size = 0.016 MB
|
320 |
+
[ 292/ 292] output_norm.weight - [ 4096, 1, 1, 1], type = f32, size = 0.016 MB
|
321 |
+
llama_model_quantize_internal: model size = 15317.02 MB
|
322 |
+
llama_model_quantize_internal: quant size = 5459.93 MB
|
323 |
+
|
324 |
+
main: quantize time = 147401.53 ms
|
325 |
+
main: total time = 147401.53 ms
|
326 |
+
Unsloth: Conversion completed! Output location: ./Asuncom/Llama-3.1-8B-bnb-4bit-shiji/unsloth.Q5_K_M.gguf
|
327 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
328 |
+
|
329 |
+
|
330 |
+
unsloth.F16.gguf: 100%|██████████| 16.1G/16.1G [26:20<00:00, 10.2MB/s]
|
331 |
+
|
332 |
+
|
333 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3.1-8B-bnb-4bit-shiji
|
334 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
335 |
+
|
336 |
+
|
337 |
+
unsloth.Q4_K_M.gguf: 100%|██████████| 4.92G/4.92G [08:05<00:00, 10.1MB/s]
|
338 |
+
|
339 |
+
|
340 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3.1-8B-bnb-4bit-shiji
|
341 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
342 |
+
|
343 |
+
|
344 |
+
unsloth.Q8_0.gguf: 100%|██████████| 8.54G/8.54G [13:48<00:00, 10.3MB/s]
|
345 |
+
|
346 |
+
|
347 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3.1-8B-bnb-4bit-shiji
|
348 |
+
Unsloth: Uploading GGUF to Huggingface Hub...
|
349 |
+
|
350 |
+
|
351 |
+
unsloth.Q5_K_M.gguf: 100%|██████████| 5.73G/5.73G [09:24<00:00, 10.2MB/s]
|
352 |
+
|
353 |
+
|
354 |
+
Saved GGUF to https://huggingface.co/Asuncom/Llama-3.1-8B-bnb-4bit-shipython
|
355 |
+
```
|