File size: 31,206 Bytes
aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 604db92 aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 7eebd5c aebdb64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
import re
from typing import List, Optional, Union, Dict, Any
from functools import cached_property
import pypinyin
import torch
from hangul_romanize import Transliter
from hangul_romanize.rule import academic
from num2words import num2words
from spacy.lang.ar import Arabic
from spacy.lang.en import English
from spacy.lang.es import Spanish
from spacy.lang.ja import Japanese
from spacy.lang.zh import Chinese
from transformers import PreTrainedTokenizerFast, BatchEncoding
from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy
from tokenizers import Tokenizer
from tokenizers.pre_tokenizers import WhitespaceSplit
from tokenizers.processors import TemplateProcessing
from auralis.models.xttsv2.components.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
import cutlet
def get_spacy_lang(lang):
if lang == "zh":
return Chinese()
elif lang == "ja":
return Japanese()
elif lang == "ar":
return Arabic()
elif lang == "es":
return Spanish()
else:
# For most languages, English does the job
return English()
def find_best_split_point(text: str, target_pos: int, window_size: int = 30) -> int:
"""
Find best split point near target position considering punctuation and language markers.
added for better sentence splitting in TTS.
"""
# Define split markers by priority
markers = [
# Strong breaks (longest pause)
(r'[.!?؟။။။]+[\s]*', 1.0), # Periods, exclamation, question (multi-script)
(r'[\n\r]+\s*[\n\r]+', 1.0), # Multiple newlines
(r'[:|;;:;][\s]*', 0.9), # Colons, semicolons (multi-script)
# Medium breaks
(r'[,,،、][\s]*', 0.8), # Commas (multi-script)
(r'[)}\])】』»›》\s]+', 0.7), # Closing brackets/parentheses
(r'[-—−]+[\s]*', 0.7), # Dashes
# Weak breaks
(r'\s+[&+=/\s]+\s+', 0.6), # Special characters with spaces
(r'[\s]+', 0.5), # Any whitespace as last resort
]
# Calculate window boundaries
start = max(0, target_pos - window_size)
end = min(len(text), target_pos + window_size)
window = text[start:end]
best_pos = target_pos
best_score = 0
for pattern, priority in markers:
matches = list(re.finditer(pattern, window))
for match in matches:
# Calculate position score based on distance from target
pos = start + match.end()
distance = abs(pos - target_pos)
distance_score = 1 - (distance / (window_size * 2))
# Combine priority and position scores
score = priority * distance_score
if score > best_score:
best_score = score
best_pos = pos
return best_pos
def split_sentence(text: str, lang: str, text_split_length: int = 250) -> List[str]:
"""
Enhanced sentence splitting with language awareness and optimal breakpoints.
Args:
text: Input text to split
lang: Language code
text_split_length: Target length for splits
Returns:
List of text splits optimized for TTS
"""
text = text.strip()
if len(text) <= text_split_length:
return [text]
nlp = get_spacy_lang(lang)
if "sentencizer" not in nlp.pipe_names:
nlp.add_pipe("sentencizer")
# Get base sentences using spaCy
doc = nlp(text)
sentences = list(doc.sents)
splits = []
current_split = []
current_length = 0
for sent in sentences:
sentence_text = str(sent).strip()
sentence_length = len(sentence_text)
# If sentence fits in current split
if current_length + sentence_length <= text_split_length:
current_split.append(sentence_text)
current_length += sentence_length + 1
# Handle long sentences
elif sentence_length > text_split_length:
# Add current split if exists
if current_split:
splits.append(" ".join(current_split))
current_split = []
current_length = 0
# Split long sentence at optimal points
remaining = sentence_text
while len(remaining) > text_split_length:
split_pos = find_best_split_point(
remaining,
text_split_length,
window_size=30
)
# Add split and continue with remainder
splits.append(remaining[:split_pos].strip())
remaining = remaining[split_pos:].strip()
# Handle remaining text
if remaining:
current_split = [remaining]
current_length = len(remaining)
# Start new split
else:
splits.append(" ".join(current_split))
current_split = [sentence_text]
current_length = sentence_length
# Add final split if needed
if current_split:
splits.append(" ".join(current_split))
cleaned_sentences = [s[:-1]+' ' if s.endswith('.') else s for s in splits if s] # prevents annoying sounds in italian
# Clean up splits
return cleaned_sentences
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
"es": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "señora"),
("sr", "señor"),
("dr", "doctor"),
("dra", "doctora"),
("st", "santo"),
("co", "compañía"),
("jr", "junior"),
("ltd", "limitada"),
]
],
"fr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mme", "madame"),
("mr", "monsieur"),
("dr", "docteur"),
("st", "saint"),
("co", "compagnie"),
("jr", "junior"),
("ltd", "limitée"),
]
],
"de": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("fr", "frau"),
("dr", "doktor"),
("st", "sankt"),
("co", "firma"),
("jr", "junior"),
]
],
"pt": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "senhora"),
("sr", "senhor"),
("dr", "doutor"),
("dra", "doutora"),
("st", "santo"),
("co", "companhia"),
("jr", "júnior"),
("ltd", "limitada"),
]
],
"it": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# ("sig.ra", "signora"),
("sig", "signore"),
("dr", "dottore"),
("st", "santo"),
("co", "compagnia"),
("jr", "junior"),
("ltd", "limitata"),
]
],
"pl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("p", "pani"),
("m", "pan"),
("dr", "doktor"),
("sw", "święty"),
("jr", "junior"),
]
],
"ar": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# There are not many common abbreviations in Arabic as in English.
]
],
"zh": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
"cs": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("ing", "inženýr"), # engineer
("p", "pan"), # Could also map to pani for woman but no easy way to do it
# Other abbreviations would be specialized and not as common.
]
],
"ru": [
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
for x in [
("г-жа", "госпожа"), # Mrs.
("г-н", "господин"), # Mr.
("д-р", "доктор"), # doctor
# Other abbreviations are less common or specialized.
]
],
"nl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dhr", "de heer"), # Mr.
("mevr", "mevrouw"), # Mrs.
("dr", "dokter"), # doctor
("jhr", "jonkheer"), # young lord or nobleman
# Dutch uses more abbreviations, but these are the most common ones.
]
],
"tr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("b", "bay"), # Mr.
("byk", "büyük"), # büyük
("dr", "doktor"), # doctor
# Add other Turkish abbreviations here if needed.
]
],
"hu": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("b", "bácsi"), # Mr.
("nőv", "nővér"), # nurse
# Add other Hungarian abbreviations here if needed.
]
],
"ko": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
if lang in _abbreviations:
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
"es": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " y "),
("@", " arroba "),
("%", " por ciento "),
("#", " numeral "),
("$", " dolar "),
("£", " libra "),
("°", " grados "),
]
],
"fr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " et "),
("@", " arobase "),
("%", " pour cent "),
("#", " dièse "),
("$", " dollar "),
("£", " livre "),
("°", " degrés "),
]
],
"de": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " und "),
("@", " at "),
("%", " prozent "),
("#", " raute "),
("$", " dollar "),
("£", " pfund "),
("°", " grad "),
]
],
"pt": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " arroba "),
("%", " por cento "),
("#", " cardinal "),
("$", " dólar "),
("£", " libra "),
("°", " graus "),
]
],
"it": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " chiocciola "),
("%", " per cento "),
("#", " cancelletto "),
("$", " dollaro "),
("£", " sterlina "),
("°", " gradi "),
]
],
"pl": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " i "),
("@", " małpa "),
("%", " procent "),
("#", " krzyżyk "),
("$", " dolar "),
("£", " funt "),
("°", " stopnie "),
]
],
"ar": [
# Arabic
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " و "),
("@", " على "),
("%", " في المئة "),
("#", " رقم "),
("$", " دولار "),
("£", " جنيه "),
("°", " درجة "),
]
],
"zh": [
# Chinese
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 和 "),
("@", " 在 "),
("%", " 百分之 "),
("#", " 号 "),
("$", " 美元 "),
("£", " 英镑 "),
("°", " 度 "),
]
],
"cs": [
# Czech
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " a "),
("@", " na "),
("%", " procento "),
("#", " křížek "),
("$", " dolar "),
("£", " libra "),
("°", " stupně "),
]
],
"ru": [
# Russian
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " и "),
("@", " собака "),
("%", " процентов "),
("#", " номер "),
("$", " доллар "),
("£", " фунт "),
("°", " градус "),
]
],
"nl": [
# Dutch
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " en "),
("@", " bij "),
("%", " procent "),
("#", " hekje "),
("$", " dollar "),
("£", " pond "),
("°", " graden "),
]
],
"tr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " ve "),
("@", " at "),
("%", " yüzde "),
("#", " diyez "),
("$", " dolar "),
("£", " sterlin "),
("°", " derece "),
]
],
"hu": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " és "),
("@", " kukac "),
("%", " százalék "),
("#", " kettőskereszt "),
("$", " dollár "),
("£", " font "),
("°", " fok "),
]
],
"ko": [
# Korean
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 그리고 "),
("@", " 에 "),
("%", " 퍼센트 "),
("#", " 번호 "),
("$", " 달러 "),
("£", " 파운드 "),
("°", " 도 "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
if lang in _symbols_multilingual:
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
}
_number_re = re.compile(r"[0-9]+")
# noinspection Annotator
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents.get(lang, ", "))
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
def _expand_number(m, lang="en"):
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
def expand_numbers_multilingual(text, lang="en"):
if lang == "zh":
text = zh_num2words()(text)
else:
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except Exception as e:
pass
if lang != "tr":
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
if lang in _ordinal_re:
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
text = expand_numbers_multilingual(text, lang)
text = expand_abbreviations_multilingual(text, lang)
text = expand_symbols_multilingual(text, lang=lang)
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def chinese_transliterate(text):
return "".join(
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
)
def japanese_cleaners(text, katsu):
text = katsu.romaji(text)
text = lowercase(text)
return text
def korean_transliterate(text, transliter):
return transliter.translit(text)
# Fast Tokenizer Class
class XTTSTokenizerFast(PreTrainedTokenizerFast):
"""
Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast
"""
def __init__(
self,
vocab_file: str = None,
tokenizer_object: Optional[Tokenizer] = None,
unk_token: str = "[UNK]",
pad_token: str = "[PAD]",
bos_token: str = "[START]",
eos_token: str = "[STOP]",
auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]},
clean_up_tokenization_spaces: bool = True,
**kwargs
):
if tokenizer_object is None and vocab_file is not None:
tokenizer_object = Tokenizer.from_file(vocab_file)
if tokenizer_object is not None:
# Configure the tokenizer
tokenizer_object.pre_tokenizer = WhitespaceSplit()
tokenizer_object.post_processor = TemplateProcessing(
single=f"{bos_token} $A {eos_token}",
special_tokens=[
(bos_token, tokenizer_object.token_to_id(bos_token)),
(eos_token, tokenizer_object.token_to_id(eos_token)),
],
)
super().__init__(
tokenizer_object=tokenizer_object,
unk_token=unk_token,
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs
)
# Character limits per language
self.char_limits = {
"en": 250, "de": 253, "fr": 273, "es": 239,
"it": 213, "pt": 203, "pl": 224, "zh": 82,
"ar": 166, "cs": 186, "ru": 182, "nl": 251,
"tr": 226, "ja": 71, "hu": 224, "ko": 95,
}
# Initialize language tools
self._katsu = None
self._korean_transliter = Transliter(academic)
# Ensure pad_token_id is set
if self.pad_token_id is None:
self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
@cached_property
def katsu(self):
if self._katsu is None:
self._katsu = cutlet.Cutlet()
return self._katsu
def preprocess_text(self, text: str, lang: str) -> str:
"""Apply text preprocessing for language"""
base_lang = lang.split("-")[0] # remove region
if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it",
"nl", "pl", "pt", "ru", "tr", "zh", "ko"}:
text = multilingual_cleaners(text, base_lang)
if base_lang == "zh":
text = chinese_transliterate(text)
if base_lang == "ko":
text = korean_transliterate(text, self._korean_transliter)
elif base_lang == "ja":
text = japanese_cleaners(text, self.katsu)
else:
text = basic_cleaners(text)
return text
def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]],
**kwargs) -> torch.Tensor:
"""
Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer.
strictly mimic the xttsv2 tokenizer
"""
# Convert single inputs to lists
if isinstance(texts, str):
texts = [texts]
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(texts) > 1:
lang = lang * len(texts)
# Check if texts and lang have the same length
if len(texts) != len(lang):
raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).")
chunk_list = []
max_splits = 0
# For each text, split into chunks based on character limit
for text, text_lang in zip(texts, lang):
# Get language character limit
base_lang = text_lang.split("-")[0]
char_limit = self.char_limits.get(base_lang, 250)
# Clean and preprocess
#text = self.preprocess_text(text, text_lang) we do this in the hidden function
# Split text into sentences/chunks based on language
chunk_list = split_sentence(text, base_lang, text_split_length=char_limit)
# Ensure the tokenizer is a fast tokenizer
if not self.is_fast:
raise ValueError("The tokenizer must be a fast tokenizer.")
# Encode all chunks using the fast tokenizer
encoding: BatchEncoding = self(
chunk_list,
lang = lang,
add_special_tokens=False,
padding=False,
**kwargs
)
# The 'input_ids' tensor will have shape [total_chunks, max_sequence_length]
return encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length]
def _batch_encode_plus(
self,
batch_text_or_text_pairs,
add_special_tokens: bool = True,
padding_strategy=PaddingStrategy.DO_NOT_PAD,
truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> Dict[str, Any]:
"""
Override batch encoding to handle language-specific preprocessing
"""
lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs))
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(batch_text_or_text_pairs) > 1:
lang = lang * len(batch_text_or_text_pairs)
# Check if batch_text_or_text_pairs and lang have the same length
if len(batch_text_or_text_pairs) != len(lang):
raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).")
# Preprocess each text in the batch with its corresponding language
processed_texts = []
for text, text_lang in zip(batch_text_or_text_pairs, lang):
if isinstance(text, str):
# Check length and preprocess
#self.check_input_length(text, text_lang)
processed_text = self.preprocess_text(text, text_lang)
# Format text with language tag and spaces
base_lang = text_lang.split("-")[0]
lang_code = "zh-cn" if base_lang == "zh" else base_lang
processed_text = f"[{lang_code}]{processed_text}"
processed_text = processed_text.replace(" ", "[SPACE]")
processed_texts.append(processed_text)
else:
processed_texts.append(text)
# Call the parent class's encoding method with processed texts
return super()._batch_encode_plus(
processed_texts,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs
)
def __call__(
self,
text: Union[str, List[str]],
lang: Union[str, List[str]] = "en",
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = True,
**kwargs
):
"""
Main tokenization method
"""
# Convert single string to list for batch processing
if isinstance(text, str):
text = [text]
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(text) > 1:
lang = lang * len(text)
# Ensure text and lang lists have same length
if len(text) != len(lang):
raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).")
# Convert padding strategy
if isinstance(padding, bool):
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
else:
padding_strategy = PaddingStrategy(padding)
# Convert truncation strategy
if isinstance(truncation, bool):
truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE
else:
truncation_strategy = TruncationStrategy(truncation)
# Use the batch encoding method
encoded = self._batch_encode_plus(
text,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
lang=lang,
**kwargs
)
return encoded
|