File size: 16,211 Bytes
7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c bfce01d 7eebd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import functools
import math
from array import array
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import List, Optional, Union, Iterable, Tuple, Mapping
from transformers import PretrainedConfig
from vllm.attention import AttentionMetadata, Attention
from vllm.config import CacheConfig, MultiModalConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.inputs import InputContext, INPUT_REGISTRY
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import ColumnParallelLinear, QKVParallelLinear, RowParallelLinear
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalInputs
from vllm.sequence import IntermediateTensors, SequenceData, VLLM_TOKEN_ID_ARRAY_TYPE
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsPP
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder # noqa
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler # noqa
from TTS.TTS.tts.layers.xtts.gpt import LearnedPositionEmbeddings
# Constants for token calculation
_AUDIO_PLACEHOLDER_TOKEN = 8192 # Using XTTS start_audio_token as placeholder
_AUDIO_TOKENS_PER_SECOND = 6.25
_CODE_STRIDE_LEN = 1024
class GPT2Attention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim**-0.5
self.c_attn = QKVParallelLinear(
self.hidden_size,
self.head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_attn",
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
self.attn = Attention(
self.num_heads,
self.head_dim,
scale=self.scale,
cache_config=cache_config,
quant_config=quant_config
)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPT2MLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_fc",
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
self.act = get_act_fn(config.activation_function, quant_config, intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPT2Block(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn"
)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(
inner_dim,
config,
quant_config,
prefix=f"{prefix}.mlp"
)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = residual + feed_forward_hidden_states
return hidden_states
def get_xtts_max_audio_tokens(ctx: InputContext) -> int:
"""Calculate maximum audio tokens based on text context and audio duration."""
# Based on GPT config and XTTSv2 settings
return 608
def dummy_seq_data_for_xtts(
ctx: InputContext,
seq_len: int,
audio_count: int,
) -> SequenceData:
"""Create dummy sequence data for XTTS profiling."""
# Calculate audio token space needed
audio_len_tokens = math.ceil(_AUDIO_TOKENS_PER_SECOND * 5) # Assume 5s per chunk
audio_placeholder = array(
VLLM_TOKEN_ID_ARRAY_TYPE,
[_AUDIO_PLACEHOLDER_TOKEN]
) * audio_len_tokens
# Add separator between chunks
audio_token_ids = (audio_placeholder + array(VLLM_TOKEN_ID_ARRAY_TYPE, [0])) * audio_count
# Fill remaining sequence with padding
other_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - len(audio_token_ids))
return SequenceData(audio_token_ids + other_token_ids)
def dummy_conditioning_for_xtts(
ctx: InputContext,
audio_count: int,
) -> dict:
"""Create dummy conditioning data for XTTS."""
return {
"audio": [(torch.zeros(80, 1024), 22050) for _ in range(audio_count)]
}
def dummy_data_for_xtts(
ctx: InputContext,
seq_len: int,
mm_counts: Mapping[str, int],
) -> Tuple[SequenceData, dict]:
"""Create complete dummy data for XTTS profiling."""
audio_count = mm_counts["audio"]
seq_data = dummy_seq_data_for_xtts(ctx, seq_len, audio_count)
cond_data = dummy_conditioning_for_xtts(ctx, audio_count)
return (seq_data, cond_data)
def input_mapper_for_xtts(ctx: InputContext, data: object) -> MultiModalInputs:
"""Map input data to XTTS format."""
if not isinstance(data, list):
data = [data]
# Each item should be a tuple of (mel_spec, sample_rate)
for audio_input in data:
if not isinstance(audio_input, tuple):
raise NotImplementedError(f"Unsupported data type: {type(audio_input)}")
return MultiModalInputs({"cond_latents": data})
@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_xtts)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("audio", get_xtts_max_audio_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_xtts)
class XttsGPT(nn.Module, SupportsMultiModal, SupportsPP):
def __init__(
self,
config: PretrainedConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional["QuantizationConfig"] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
# XTTS specific components
self.conditioning_encoder = ConditioningEncoder(
config.audio_config.mel_channels,
config.hidden_size,
num_attn_heads=config.num_attention_heads
)
if config.use_perceiver_resampler:
self.conditioning_perceiver = PerceiverResampler(
dim=config.hidden_size,
depth=2,
dim_context=config.hidden_size,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
)
# Core GPT components following VLLM pattern
self.gpt = XttsGPT2Model(
config,
cache_config,
quant_config,
prefix="gpt"
)
# Prediction heads
self.text_head = ColumnParallelLinear(
config.hidden_size,
config.vocab_size,
bias=False,
quant_config=quant_config,
prefix="text_head"
)
self.mel_head = ColumnParallelLinear(
config.hidden_size,
config.num_audio_tokens,
bias=False,
quant_config=quant_config,
prefix="mel_head"
)
self.sampler = Sampler()
def get_style_emb(self, cond_input: torch.Tensor, return_latent: bool = False) -> torch.Tensor:
"""Get conditioning embeddings from mel spectrograms."""
if not return_latent:
if cond_input.ndim == 4:
cond_input = cond_input.squeeze(1)
conds = self.conditioning_encoder(cond_input)
if hasattr(self, 'conditioning_perceiver'):
conds = self.conditioning_perceiver(
conds.permute(0, 2, 1)
).transpose(1, 2)
else:
conds = cond_input.unsqueeze(1)
return conds
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None,
cond_latents: Optional[torch.Tensor] = None ) -> torch.Tensor:
"""Forward pass following VLLM pattern."""
if cond_latents is not None:
# Combine conditioning with input embeddings
input_embeds = self.gpt.get_input_embeddings()(input_ids)
combined_embeds = torch.cat([cond_latents, input_embeds], dim=1)
hidden_states = self.gpt(
inputs_embeds=combined_embeds,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
)
else:
hidden_states = self.gpt(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
)
return hidden_states
def compute_logits( # useless but kept for compatibility
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
"""Compute output logits."""
text_logits = self.text_head(hidden_states[sampling_metadata.selected_token_indices])
mel_logits = self.mel_head(hidden_states[sampling_metadata.selected_token_indices])
return torch.cat([text_logits, mel_logits], dim=1)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
"""Sample next tokens using VLLM sampler."""
return self.sampler(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
"""Load weights following VLLM pattern."""
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if name not in params_dict:
continue
param = params_dict[name]
if "c_attn" in name or "c_proj" in name or "c_fc" in name:
if name.endswith(".weight"):
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
class XttsGPT2Model(nn.Module):
"""VLLM-style implementation of GPT2 core architecture."""
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.text_embedding = VocabParallelEmbedding(
config.number_text_tokens,
config.hidden_size
)
self.mel_embedding = VocabParallelEmbedding(
config.num_audio_tokens,
config.hidden_size
)
self.text_pos_embedding = (
LearnedPositionEmbeddings(
config.max_text_tokens + 2,
config.hidden_size
)
if config.max_audio_tokens != -1
else functools.partial(config.null_position_embeddings, dim=config.hidden_size)
)
self.mel_pos_embedding = (
LearnedPositionEmbeddings(
config.max_audio_tokens + 3,
config.hidden_size
)
if config.max_audio_tokens != -1
else functools.partial(config.null_position_embeddings, dim=config.hidden_size)
)
self.h = nn.ModuleList([
GPT2Block(
config,
cache_config,
quant_config,
prefix=f"{prefix}.h.{i}"
) for i in range(config.num_hidden_layers)
])
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def get_input_embeddings(self):
return self.text_embedding
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
positions: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
kv_caches: List[torch.Tensor] = None,
attn_metadata: AttentionMetadata = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is None:
inputs_embeds = self.text_embedding(input_ids)
hidden_states = inputs_embeds
if positions is not None:
position_embeds = self.text_pos_embedding(positions)
hidden_states = hidden_states + position_embeds
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for i, block in enumerate(self.h):
hidden_states = block(
hidden_states,
kv_caches[i],
attn_metadata
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.ln_f(hidden_states)
return hidden_states |