--- license: llama2 tags: - generated_from_trainer datasets: - AshtonIsNotHere/nlp_pp_code_dataset metrics: - accuracy model-index: - name: CodeLlama_7B_nlp_pp results: - task: name: Causal Language Modeling type: text-generation dataset: name: AshtonIsNotHere/nlp_pp_code_dataset type: AshtonIsNotHere/nlp_pp_code_dataset split: test metrics: - name: Accuracy type: accuracy value: 0.8968056729128353 --- # CodeLlama_7B_nlp_pp This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co./codellama/CodeLlama-7b-hf) on the AshtonIsNotHere/nlp_pp_code_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4129 - Accuracy: 0.8968 ## Model description This model has been fine-tuned for code completion on a dataset of NLP++ code. ## Intended uses & limitations More information needed ## Training and evaluation data Dataset consists of a combination of scraped NLP++ code and NLP++ code examples from the [VisualText website](https://visualtext.org/help/). ## Training procedure This model is trained in a multinode, multi-gpu setup with DeepSpeed Z3. For more information on the training setup, check out the [GitHub repo](https://github.com/ashtonomy/nlp_pp_code_completion). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 61 | 0.5100 | 0.8726 | | No log | 1.99 | 122 | 0.4129 | 0.8968 | | No log | 2.99 | 183 | 0.4166 | 0.9072 | | No log | 4.0 | 245 | 0.4595 | 0.9090 | | No log | 5.0 | 306 | 0.5181 | 0.9093 | | No log | 5.99 | 367 | 0.5553 | 0.9090 | | No log | 6.97 | 427 | 0.5603 | 0.9089 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3