Delete copy_of_alpaca_+_llama_3_8b_full_example.py
Browse files
copy_of_alpaca_+_llama_3_8b_full_example.py
DELETED
@@ -1,313 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Copy of Alpaca + Llama-3 8b full example.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/12GTGPtaZvutZlE2GUHmeXVrvq2dgJdu6
|
8 |
-
|
9 |
-
To run this, press "*Runtime*" and press "*Run all*" on a **free** Tesla T4 Google Colab instance!
|
10 |
-
<div class="align-center">
|
11 |
-
<a href="https://github.com/unslothai/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="115"></a>
|
12 |
-
<a href="https://discord.gg/u54VK8m8tk"><img src="https://github.com/unslothai/unsloth/raw/main/images/Discord button.png" width="145"></a>
|
13 |
-
<a href="https://ko-fi.com/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png" width="145"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href="https://github.com/unslothai/unsloth">Github</a> </i> ⭐
|
14 |
-
</div>
|
15 |
-
|
16 |
-
To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).
|
17 |
-
|
18 |
-
You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).
|
19 |
-
|
20 |
-
**[NEW] Llama-3 8b is trained on a crazy 15 trillion tokens! Llama-2 was 2 trillion.**
|
21 |
-
"""
|
22 |
-
|
23 |
-
# Commented out IPython magic to ensure Python compatibility.
|
24 |
-
# %%capture
|
25 |
-
# # Installs Unsloth, Xformers (Flash Attention) and all other packages!
|
26 |
-
# !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
27 |
-
# !pip install --no-deps "xformers<0.0.26" trl peft accelerate bitsandbytes
|
28 |
-
|
29 |
-
"""* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc
|
30 |
-
* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.
|
31 |
-
* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.
|
32 |
-
* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.
|
33 |
-
* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models.
|
34 |
-
"""
|
35 |
-
|
36 |
-
from unsloth import FastLanguageModel
|
37 |
-
import torch
|
38 |
-
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
39 |
-
dtype = None # Noad_in_4bit = True # Use 4bit quanbe False.
|
40 |
-
|
41 |
-
# 4bit pre quantized models w no OOMs.
|
42 |
-
fourbit_models = [
|
43 |
-
"unslothistral-7b-instruct-v0.2-bnb-4bit",
|
44 |
-
"unsloth/llama-2-7b-bnb-4bit",
|
45 |
-
"unsloth/gemma-7b-bnb-4bit",
|
46 |
-
nstruct version of Gemma 7b
|
47 |
-
"unsloth/gemma-2b-bnb-4bit",
|
48 |
-
"unsloth/gemma-2 Gemma 2b
|
49 |
-
"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
|
50 |
-
] # More models at https://huggingface.co/unslodel.from_pretrained(
|
51 |
-
model_name = "unsloth/llama-3-8b-bnb-4bit",
|
52 |
-
max_seq_length = max_seq_length,
|
53 |
-
dtype = dtype,
|
54 |
-
load_in_4bit = load_in_4bit,
|
55 |
-
token = """", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
56 |
-
)
|
57 |
-
|
58 |
-
"""We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"""
|
59 |
-
|
60 |
-
model = FastLanguageModel.get_peft_model(
|
61 |
-
model,
|
62 |
-
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
63 |
-
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
64 |
-
"gate_proj", "up_proj", "down_proj",],
|
65 |
-
lora_alpha = 16,
|
66 |
-
lora_dropout = 0, # Supports any, but = 0 is optimized
|
67 |
-
bias = "none", # Supports any, but = "none" is optimized
|
68 |
-
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
69 |
-
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
70 |
-
random_state = 3407,
|
71 |
-
use_rslora = False, # We support rank stabilized LoRA
|
72 |
-
loftq_config = None, # And LoftQ
|
73 |
-
)
|
74 |
-
|
75 |
-
"""<a name="Data"></a>
|
76 |
-
### Data Prep
|
77 |
-
We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.
|
78 |
-
|
79 |
-
**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).
|
80 |
-
|
81 |
-
**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!
|
82 |
-
|
83 |
-
If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).
|
84 |
-
|
85 |
-
For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing).
|
86 |
-
"""
|
87 |
-
|
88 |
-
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
89 |
-
|
90 |
-
### Instruction:
|
91 |
-
{}
|
92 |
-
|
93 |
-
### Input:
|
94 |
-
{}
|
95 |
-
|
96 |
-
### Response:
|
97 |
-
{}"""
|
98 |
-
|
99 |
-
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
100 |
-
def formatting_prompts_func(examples):
|
101 |
-
instructions = examples["instruction"]
|
102 |
-
inputs = examples["input"]
|
103 |
-
outputs = examples["output"]
|
104 |
-
texts = []
|
105 |
-
for instruction, input, output in zip(instructions, inputs, outputs):
|
106 |
-
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
107 |
-
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
108 |
-
texts.append(text)
|
109 |
-
return { "text" : texts, }
|
110 |
-
pass
|
111 |
-
|
112 |
-
from datasets import load_dataset
|
113 |
-
dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
|
114 |
-
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
115 |
-
|
116 |
-
"""<a name="Train"></a>
|
117 |
-
### Train the model
|
118 |
-
Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!
|
119 |
-
"""
|
120 |
-
|
121 |
-
from trl import SFTTrainer
|
122 |
-
from transformers import TrainingArguments
|
123 |
-
|
124 |
-
trainer = SFTTrainer(
|
125 |
-
model = model,
|
126 |
-
tokenizer = tokenizer,
|
127 |
-
train_dataset = dataset,
|
128 |
-
dataset_text_field = "text",
|
129 |
-
max_seq_length = max_seq_length,
|
130 |
-
dataset_num_proc = 2,
|
131 |
-
packing = False, # Can make training 5x faster for short sequences.
|
132 |
-
args = TrainingArguments(
|
133 |
-
per_device_train_batch_size = 2,
|
134 |
-
gradient_accumulation_steps = 4,
|
135 |
-
warmup_steps = 5,
|
136 |
-
max_steps = 60,
|
137 |
-
learning_rate = 2e-4,
|
138 |
-
fp16 = not torch.cuda.is_bf16_supported(),
|
139 |
-
bf16 = torch.cuda.is_bf16_supported(),
|
140 |
-
logging_steps = 1,
|
141 |
-
optim = "adamw_8bit",
|
142 |
-
weight_decay = 0.01,
|
143 |
-
lr_scheduler_type = "linear",
|
144 |
-
seed = 3407,
|
145 |
-
output_dir = "outputs",
|
146 |
-
),
|
147 |
-
)
|
148 |
-
|
149 |
-
#@title Show current memory stats
|
150 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
151 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
152 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
153 |
-
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
154 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
155 |
-
|
156 |
-
trainer_stats = trainer.train()
|
157 |
-
|
158 |
-
#@title Show final memory and time stats
|
159 |
-
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
160 |
-
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
161 |
-
used_percentage = round(used_memory /max_memory*100, 3)
|
162 |
-
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
163 |
-
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
164 |
-
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
165 |
-
print(f"Peak reserved memory = {used_memory} GB.")
|
166 |
-
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
167 |
-
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
168 |
-
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
169 |
-
|
170 |
-
"""<a name="Inference"></a>
|
171 |
-
### Inference
|
172 |
-
Let's run the model! You can change the instruction and input - leave the output blank!
|
173 |
-
"""
|
174 |
-
|
175 |
-
# alpaca_prompt = Copied from above
|
176 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
177 |
-
inputs = tokenizer(
|
178 |
-
[
|
179 |
-
alpaca_prompt.format(
|
180 |
-
"Continue the fibonnaci sequence.", # instruction
|
181 |
-
"1, 1, 2, 3, 5, 8", # input
|
182 |
-
"", # output - leave this blank for generation!
|
183 |
-
)
|
184 |
-
], return_tensors = "pt").to("cuda")
|
185 |
-
|
186 |
-
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
187 |
-
tokenizer.batch_decode(outputs)
|
188 |
-
|
189 |
-
""" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"""
|
190 |
-
|
191 |
-
# alpaca_prompt = Copied from above
|
192 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
193 |
-
inputs = tokenizer(
|
194 |
-
[
|
195 |
-
alpaca_prompt.format(
|
196 |
-
"Continue the fibonnaci sequence.", # instruction
|
197 |
-
"1, 1, 2, 3, 5, 8", # input
|
198 |
-
"", # output - leave this blank for generation!
|
199 |
-
)
|
200 |
-
], return_tensors = "pt").to("cuda")
|
201 |
-
|
202 |
-
from transformers import TextStreamer
|
203 |
-
text_streamer = TextStreamer(tokenizer)
|
204 |
-
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|
205 |
-
|
206 |
-
"""<a name="Save"></a>
|
207 |
-
### Saving, loading finetuned models
|
208 |
-
To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.
|
209 |
-
|
210 |
-
**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!
|
211 |
-
"""
|
212 |
-
|
213 |
-
#model.save_pretrained("lora_model") # Local saving
|
214 |
-
#tokenizer.save_pretrained("lora_model")
|
215 |
-
model.push_to_hub("Arun1982/LLama3-LoRA", token = """") # Online saving
|
216 |
-
tokenizer.push_to_hub("Arun1982/LLama3-LoRA", token = """") # Online saving
|
217 |
-
|
218 |
-
"""Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"""
|
219 |
-
|
220 |
-
if False:
|
221 |
-
from unsloth import FastLanguageModel
|
222 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
223 |
-
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
224 |
-
max_seq_length = max_seq_length,
|
225 |
-
dtype = dtype,
|
226 |
-
load_in_4bit = load_in_4bit,
|
227 |
-
)
|
228 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
229 |
-
|
230 |
-
# alpaca_prompt = You MUST copy from above!
|
231 |
-
|
232 |
-
inputs = tokenizer(
|
233 |
-
[
|
234 |
-
alpaca_prompt.format(
|
235 |
-
"What is a famous tall tower in Paris?", # instruction
|
236 |
-
"", # input
|
237 |
-
"", # output - leave this blank for generation!
|
238 |
-
)
|
239 |
-
], return_tensors = "pt").to("cuda")
|
240 |
-
|
241 |
-
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
242 |
-
tokenizer.batch_decode(outputs)
|
243 |
-
|
244 |
-
"""You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."""
|
245 |
-
|
246 |
-
if False:
|
247 |
-
# I highly do NOT suggest - use Unsloth if possible
|
248 |
-
from peft import AutoPeftModelForCausalLM
|
249 |
-
from transformers import AutoTokenizer
|
250 |
-
model = AutoPeftModelForCausalLM.from_pretrained(
|
251 |
-
"lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
252 |
-
load_in_4bit = load_in_4bit,
|
253 |
-
)
|
254 |
-
tokenizer = AutoTokenizer.from_pretrained("lora_model")
|
255 |
-
|
256 |
-
"""### Saving to float16 for VLLM
|
257 |
-
|
258 |
-
We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens.
|
259 |
-
"""
|
260 |
-
|
261 |
-
# Merge to 16bit
|
262 |
-
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
|
263 |
-
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "merged_16bit", token = """")
|
264 |
-
|
265 |
-
# Merge to 4bit
|
266 |
-
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
|
267 |
-
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "merged_4bit_forced", token = """")
|
268 |
-
|
269 |
-
# Just LoRA adapters
|
270 |
-
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|
271 |
-
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "lora", token = """")
|
272 |
-
|
273 |
-
"""### GGUF / llama.cpp Conversion
|
274 |
-
To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.
|
275 |
-
|
276 |
-
Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):
|
277 |
-
* `q8_0` - Fast conversion. High resource use, but generally acceptable.
|
278 |
-
* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.
|
279 |
-
* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.
|
280 |
-
"""
|
281 |
-
|
282 |
-
# Save to 8bit Q8_0
|
283 |
-
if False: model.save_pretrained_gguf("model", tokenizer,)
|
284 |
-
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, token = """")
|
285 |
-
|
286 |
-
# Save to 16bit GGUF
|
287 |
-
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
|
288 |
-
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, quantization_method = "f16", token = """")
|
289 |
-
|
290 |
-
# Save to q4_k_m GGUF
|
291 |
-
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
|
292 |
-
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, quantization_method = "q4_k_m", token = """")
|
293 |
-
|
294 |
-
"""Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html).
|
295 |
-
|
296 |
-
And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!
|
297 |
-
|
298 |
-
Some other links:
|
299 |
-
1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)
|
300 |
-
2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)
|
301 |
-
3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)
|
302 |
-
4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)
|
303 |
-
5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)
|
304 |
-
6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!
|
305 |
-
7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)
|
306 |
-
8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)
|
307 |
-
|
308 |
-
<div class="align-center">
|
309 |
-
<a href="https://github.com/unslothai/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="115"></a>
|
310 |
-
<a href="https://discord.gg/u54VK8m8tk"><img src="https://github.com/unslothai/unsloth/raw/main/images/Discord.png" width="145"></a>
|
311 |
-
<a href="https://ko-fi.com/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png" width="145"></a></a> Support our work if you can! Thanks!
|
312 |
-
</div>
|
313 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|