|
|
|
"""Copy of Alpaca + Llama-3 8b full example.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/12GTGPtaZvutZlE2GUHmeXVrvq2dgJdu6 |
|
|
|
To run this, press "*Runtime*" and press "*Run all*" on a **free** Tesla T4 Google Colab instance! |
|
<div class="align-center"> |
|
<a href="https://github.com/unslothai/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="115"></a> |
|
<a href="https://discord.gg/u54VK8m8tk"><img src="https://github.com/unslothai/unsloth/raw/main/images/Discord button.png" width="145"></a> |
|
<a href="https://ko-fi.com/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png" width="145"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href="https://github.com/unslothai/unsloth">Github</a> </i> ⭐ |
|
</div> |
|
|
|
To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda). |
|
|
|
You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp). |
|
|
|
**[NEW] Llama-3 8b is trained on a crazy 15 trillion tokens! Llama-2 was 2 trillion.** |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc |
|
* And Yi, Qwen ([llamafied](https://huggingface.co./models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs. |
|
* We support 16bit LoRA or 4bit QLoRA. Both 2x faster. |
|
* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method. |
|
* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co./unsloth) has Llama, Mistral 4bit models. |
|
""" |
|
|
|
from unsloth import FastLanguageModel |
|
import torch |
|
max_seq_length = 2048 |
|
dtype = None |
|
|
|
|
|
fourbit_models = [ |
|
"unslothistral-7b-instruct-v0.2-bnb-4bit", |
|
"unsloth/llama-2-7b-bnb-4bit", |
|
"unsloth/gemma-7b-bnb-4bit", |
|
nstruct version of Gemma 7b |
|
"unsloth/gemma-2b-bnb-4bit", |
|
"unsloth/gemma-2 Gemma 2b |
|
"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3 |
|
] # More models at https://huggingface.co./unslodel.from_pretrained( |
|
model_name = "unsloth/llama-3-8b-bnb-4bit", |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
token = """", # use one if using gated models like meta-llama/Llama-2-7b-hf |
|
) |
|
|
|
"""We now add LoRA adapters so we only need to update 1 to 10% of all parameters!""" |
|
|
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = 16, |
|
lora_dropout = 0, # Supports any, but = 0 is optimized |
|
bias = "none", # Supports any, but = "none" is optimized |
|
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! |
|
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context |
|
random_state = 3407, |
|
use_rslora = False, # We support rank stabilized LoRA |
|
loftq_config = None, # And LoftQ |
|
) |
|
|
|
"""<a name="Data"></a> |
|
|
|
We now use the Alpaca dataset from [yahma](https://huggingface.co./datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep. |
|
|
|
**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co./docs/trl/sft_trainer |
|
|
|
**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations! |
|
|
|
If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing). |
|
|
|
For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing). |
|
""" |
|
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN |
|
def formatting_prompts_func(examples): |
|
instructions = examples["instruction"] |
|
inputs = examples["input"] |
|
outputs = examples["output"] |
|
texts = [] |
|
for instruction, input, output in zip(instructions, inputs, outputs): |
|
# Must add EOS_TOKEN, otherwise your generation will go on forever! |
|
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN |
|
texts.append(text) |
|
return { "text" : texts, } |
|
pass |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset("yahma/alpaca-cleaned", split = "train") |
|
dataset = dataset.map(formatting_prompts_func, batched = True,) |
|
|
|
"""<a name="Train"></a> |
|
### Train the model |
|
Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co./docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`! |
|
""" |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
|
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset = dataset, |
|
dataset_text_field = "text", |
|
max_seq_length = max_seq_length, |
|
dataset_num_proc = 2, |
|
packing = False, # Can make training 5x faster for short sequences. |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 2, |
|
gradient_accumulation_steps = 4, |
|
warmup_steps = 5, |
|
max_steps = 60, |
|
learning_rate = 2e-4, |
|
fp16 = not torch.cuda.is_bf16_supported(), |
|
bf16 = torch.cuda.is_bf16_supported(), |
|
logging_steps = 1, |
|
optim = "adamw_8bit", |
|
weight_decay = 0.01, |
|
lr_scheduler_type = "linear", |
|
seed = 3407, |
|
output_dir = "outputs", |
|
), |
|
) |
|
|
|
#@title Show current memory stats |
|
gpu_stats = torch.cuda.get_device_properties(0) |
|
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) |
|
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) |
|
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") |
|
print(f"{start_gpu_memory} GB of memory reserved.") |
|
|
|
trainer_stats = trainer.train() |
|
|
|
#@title Show final memory and time stats |
|
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) |
|
used_memory_for_lora = round(used_memory - start_gpu_memory, 3) |
|
used_percentage = round(used_memory /max_memory*100, 3) |
|
lora_percentage = round(used_memory_for_lora/max_memory*100, 3) |
|
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") |
|
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.") |
|
print(f"Peak reserved memory = {used_memory} GB.") |
|
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") |
|
print(f"Peak reserved memory % of max memory = {used_percentage} %.") |
|
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") |
|
|
|
"""<a name="Inference"></a> |
|
|
|
Let's run the model! You can change the instruction and input - leave the output blank! |
|
""" |
|
|
|
# alpaca_prompt = Copied from above |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"Continue the fibonnaci sequence.", # instruction |
|
"1, 1, 2, 3, 5, 8", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
tokenizer.batch_decode(outputs) |
|
|
|
""" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!""" |
|
|
|
# alpaca_prompt = Copied from above |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"Continue the fibonnaci sequence.", # instruction |
|
"1, 1, 2, 3, 5, 8", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
from transformers import TextStreamer |
|
text_streamer = TextStreamer(tokenizer) |
|
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128) |
|
|
|
"""<a name="Save"></a> |
|
### Saving, loading finetuned models |
|
To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save. |
|
|
|
**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down! |
|
""" |
|
|
|
#model.save_pretrained("lora_model") # Local saving |
|
#tokenizer.save_pretrained("lora_model") |
|
model.push_to_hub("Arun1982/LLama3-LoRA", token = """") # Online saving |
|
tokenizer.push_to_hub("Arun1982/LLama3-LoRA", token = """") # Online saving |
|
|
|
"""Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:""" |
|
|
|
if False: |
|
from unsloth import FastLanguageModel |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
) |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
|
|
# alpaca_prompt = You MUST copy from above! |
|
|
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"What is a famous tall tower in Paris?", # instruction |
|
"", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
tokenizer.batch_decode(outputs) |
|
|
|
"""You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**.""" |
|
|
|
if False: |
|
# I highly do NOT suggest - use Unsloth if possible |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
"lora_model", # YOUR MODEL YOU USED FOR TRAINING |
|
load_in_4bit = load_in_4bit, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("lora_model") |
|
|
|
""" |
|
|
|
We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co./settings/tokens for your personal tokens. |
|
""" |
|
|
|
# Merge to 16bit |
|
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) |
|
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "merged_16bit", token = """") |
|
|
|
# Merge to 4bit |
|
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) |
|
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "merged_4bit_forced", token = """") |
|
|
|
# Just LoRA adapters |
|
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",) |
|
if True: model.push_to_hub_merged("Arun1982/LLama3-LoRA", tokenizer, save_method = "lora", token = """") |
|
|
|
""" |
|
To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF. |
|
|
|
Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki |
|
* `q8_0` - Fast conversion. High resource use, but generally acceptable. |
|
* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K. |
|
* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K. |
|
""" |
|
|
|
# Save to 8bit Q8_0 |
|
if False: model.save_pretrained_gguf("model", tokenizer,) |
|
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, token = """") |
|
|
|
# Save to 16bit GGUF |
|
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16") |
|
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, quantization_method = "f16", token = """") |
|
|
|
# Save to q4_k_m GGUF |
|
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m") |
|
if True: model.push_to_hub_gguf("Arun1982/LLama3-LoRA", tokenizer, quantization_method = "q4_k_m", token = """") |
|
|
|
"""Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html). |
|
|
|
And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord! |
|
|
|
Some other links: |
|
1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) |
|
2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing) |
|
3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) |
|
4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing) |
|
5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook) |
|
6. We also did a [blog](https://huggingface.co./blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co./docs/trl/main/en/sft_trainer |
|
7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) |
|
8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) |
|
|
|
<div class="align-center"> |
|
<a href="https://github.com/unslothai/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="115"></a> |
|
<a href="https://discord.gg/u54VK8m8tk"><img src="https://github.com/unslothai/unsloth/raw/main/images/Discord.png" width="145"></a> |
|
<a href="https://ko-fi.com/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png" width="145"></a></a> Support our work if you can! Thanks! |
|
</div> |
|
""" |