File size: 23,663 Bytes
6425303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
{
"cells": [
{
"cell_type": "markdown",
"source": [
"To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
"<div class=\"align-center\">\n",
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord button.png\" width=\"145\"></a>\n",
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐\n",
"</div>\n",
"\n",
"To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n",
"\n",
"You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n",
"\n",
"**[NEW] Llama-3 8b is trained on a crazy 15 trillion tokens! Llama-2 was 2 trillion.**"
],
"metadata": {
"id": "IqM-T1RTzY6C"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2eSvM9zX_2d3"
},
"outputs": [],
"source": [
"%%capture\n",
"# Installs Unsloth, Xformers (Flash Attention) and all other packages!\n",
"!pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n",
"!pip install --no-deps \"xformers<0.0.26\" trl peft accelerate bitsandbytes"
]
},
{
"cell_type": "markdown",
"source": [
"* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n",
"* And Yi, Qwen ([llamafied](https://huggingface.co./models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n",
"* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
"* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
"* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co./unsloth) has Llama, Mistral 4bit models."
],
"metadata": {
"id": "r2v_X2fA0Df5"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QmUBVEnvCDJv"
},
"outputs": [],
"source": [
"from unsloth import FastLanguageModel\n",
"import torch\n",
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
"dtype = None # Noad_in_4bit = True # Use 4bit quanbe False.\n",
"\n",
"# 4bit pre quantized models w no OOMs.\n",
"fourbit_models = [\n",
" \"unslothistral-7b-instruct-v0.2-bnb-4bit\",\n",
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
" \"unsloth/gemma-7b-bnb-4bit\",\n",
" nstruct version of Gemma 7b\n",
" \"unsloth/gemma-2b-bnb-4bit\",\n",
" \"unsloth/gemma-2 Gemma 2b\n",
" \"unsloth/llama-3-8b-bnb-4bit\", # [NEW] 15 Trillion token Llama-3\n",
"] # More models at https://huggingface.co./unslodel.from_pretrained(\n",
" model_name = \"unsloth/llama-3-8b-bnb-4bit\",\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" token = \"\"\"\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
")"
]
},
{
"cell_type": "markdown",
"source": [
"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
],
"metadata": {
"id": "SXd9bTZd1aaL"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6bZsfBuZDeCL"
},
"outputs": [],
"source": [
"model = FastLanguageModel.get_peft_model(\n",
" model,\n",
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
" lora_alpha = 16,\n",
" lora_dropout = 0, # Supports any, but = 0 is optimized\n",
" bias = \"none\", # Supports any, but = \"none\" is optimized\n",
" # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n",
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n",
" random_state = 3407,\n",
" use_rslora = False, # We support rank stabilized LoRA\n",
" loftq_config = None, # And LoftQ\n",
")"
]
},
{
"cell_type": "markdown",
"source": [
"<a name=\"Data\"></a>\n",
"### Data Prep\n",
"We now use the Alpaca dataset from [yahma](https://huggingface.co./datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n",
"\n",
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co./docs/trl/sft_trainer#train-on-completions-only).\n",
"\n",
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
"\n",
"If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
"\n",
"For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
],
"metadata": {
"id": "vITh0KVJ10qX"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LjY75GoYUCB8"
},
"outputs": [],
"source": [
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
"\n",
"### Instruction:\n",
"{}\n",
"\n",
"### Input:\n",
"{}\n",
"\n",
"### Response:\n",
"{}\"\"\"\n",
"\n",
"EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN\n",
"def formatting_prompts_func(examples):\n",
" instructions = examples[\"instruction\"]\n",
" inputs = examples[\"input\"]\n",
" outputs = examples[\"output\"]\n",
" texts = []\n",
" for instruction, input, output in zip(instructions, inputs, outputs):\n",
" # Must add EOS_TOKEN, otherwise your generation will go on forever!\n",
" text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN\n",
" texts.append(text)\n",
" return { \"text\" : texts, }\n",
"pass\n",
"\n",
"from datasets import load_dataset\n",
"dataset = load_dataset(\"yahma/alpaca-cleaned\", split = \"train\")\n",
"dataset = dataset.map(formatting_prompts_func, batched = True,)"
]
},
{
"cell_type": "markdown",
"source": [
"<a name=\"Train\"></a>\n",
"### Train the model\n",
"Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co./docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
],
"metadata": {
"id": "idAEIeSQ3xdS"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "95_Nn-89DhsL"
},
"outputs": [],
"source": [
"from trl import SFTTrainer\n",
"from transformers import TrainingArguments\n",
"\n",
"trainer = SFTTrainer(\n",
" model = model,\n",
" tokenizer = tokenizer,\n",
" train_dataset = dataset,\n",
" dataset_text_field = \"text\",\n",
" max_seq_length = max_seq_length,\n",
" dataset_num_proc = 2,\n",
" packing = False, # Can make training 5x faster for short sequences.\n",
" args = TrainingArguments(\n",
" per_device_train_batch_size = 2,\n",
" gradient_accumulation_steps = 4,\n",
" warmup_steps = 5,\n",
" max_steps = 60,\n",
" learning_rate = 2e-4,\n",
" fp16 = not torch.cuda.is_bf16_supported(),\n",
" bf16 = torch.cuda.is_bf16_supported(),\n",
" logging_steps = 1,\n",
" optim = \"adamw_8bit\",\n",
" weight_decay = 0.01,\n",
" lr_scheduler_type = \"linear\",\n",
" seed = 3407,\n",
" output_dir = \"outputs\",\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2ejIt2xSNKKp",
"cellView": "form"
},
"outputs": [],
"source": [
"#@title Show current memory stats\n",
"gpu_stats = torch.cuda.get_device_properties(0)\n",
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
"print(f\"{start_gpu_memory} GB of memory reserved.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yqxqAZ7KJ4oL"
},
"outputs": [],
"source": [
"trainer_stats = trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pCqnaKmlO1U9",
"cellView": "form"
},
"outputs": [],
"source": [
"#@title Show final memory and time stats\n",
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
"used_percentage = round(used_memory /max_memory*100, 3)\n",
"lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
"print(f\"Peak reserved memory = {used_memory} GB.\")\n",
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
]
},
{
"cell_type": "markdown",
"source": [
"<a name=\"Inference\"></a>\n",
"### Inference\n",
"Let's run the model! You can change the instruction and input - leave the output blank!"
],
"metadata": {
"id": "ekOmTR1hSNcr"
}
},
{
"cell_type": "code",
"source": [
"# alpaca_prompt = Copied from above\n",
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
" \"Continue the fibonnaci sequence.\", # instruction\n",
" \"1, 1, 2, 3, 5, 8\", # input\n",
" \"\", # output - leave this blank for generation!\n",
" )\n",
"], return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
"tokenizer.batch_decode(outputs)"
],
"metadata": {
"id": "kR3gIAX-SM2q"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
],
"metadata": {
"id": "CrSvZObor0lY"
}
},
{
"cell_type": "code",
"source": [
"# alpaca_prompt = Copied from above\n",
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
" \"Continue the fibonnaci sequence.\", # instruction\n",
" \"1, 1, 2, 3, 5, 8\", # input\n",
" \"\", # output - leave this blank for generation!\n",
" )\n",
"], return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
"from transformers import TextStreamer\n",
"text_streamer = TextStreamer(tokenizer)\n",
"_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
],
"metadata": {
"id": "e2pEuRb1r2Vg"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"<a name=\"Save\"></a>\n",
"### Saving, loading finetuned models\n",
"To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
"\n",
"**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
],
"metadata": {
"id": "uMuVrWbjAzhc"
}
},
{
"cell_type": "code",
"source": [
"#model.save_pretrained(\"lora_model\") # Local saving\n",
"#tokenizer.save_pretrained(\"lora_model\")\n",
"model.push_to_hub(\"Arun1982/LLama3-LoRA\", token = \"\"\"\") # Online saving\n",
"tokenizer.push_to_hub(\"Arun1982/LLama3-LoRA\", token = \"\"\"\") # Online saving"
],
"metadata": {
"id": "upcOlWe7A1vc"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
],
"metadata": {
"id": "AEEcJ4qfC7Lp"
}
},
{
"cell_type": "code",
"source": [
"if False:\n",
" from unsloth import FastLanguageModel\n",
" model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" )\n",
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
"\n",
"# alpaca_prompt = You MUST copy from above!\n",
"\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
" \"What is a famous tall tower in Paris?\", # instruction\n",
" \"\", # input\n",
" \"\", # output - leave this blank for generation!\n",
" )\n",
"], return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
"tokenizer.batch_decode(outputs)"
],
"metadata": {
"id": "MKX_XKs_BNZR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
],
"metadata": {
"id": "QQMjaNrjsU5_"
}
},
{
"cell_type": "code",
"source": [
"if False:\n",
" # I highly do NOT suggest - use Unsloth if possible\n",
" from peft import AutoPeftModelForCausalLM\n",
" from transformers import AutoTokenizer\n",
" model = AutoPeftModelForCausalLM.from_pretrained(\n",
" \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
" load_in_4bit = load_in_4bit,\n",
" )\n",
" tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
],
"metadata": {
"id": "yFfaXG0WsQuE"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Saving to float16 for VLLM\n",
"\n",
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co./settings/tokens for your personal tokens."
],
"metadata": {
"id": "f422JgM9sdVT"
}
},
{
"cell_type": "code",
"source": [
"# Merge to 16bit\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"merged_16bit\", token = \"\"\"\")\n",
"\n",
"# Merge to 4bit\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"merged_4bit_forced\", token = \"\"\"\")\n",
"\n",
"# Just LoRA adapters\n",
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"lora\", token = \"\"\"\")"
],
"metadata": {
"id": "iHjt_SMYsd3P"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### GGUF / llama.cpp Conversion\n",
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
"\n",
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
],
"metadata": {
"id": "TCv4vXHd61i7"
}
},
{
"cell_type": "code",
"source": [
"# Save to 8bit Q8_0\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, token = \"\"\"\")\n",
"\n",
"# Save to 16bit GGUF\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, quantization_method = \"f16\", token = \"\"\"\")\n",
"\n",
"# Save to q4_k_m GGUF\n",
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, quantization_method = \"q4_k_m\", token = \"\"\"\")"
],
"metadata": {
"id": "FqfebeAdT073"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
],
"metadata": {
"id": "bDp0zNpwe6U_"
}
},
{
"cell_type": "markdown",
"source": [
"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
"\n",
"Some other links:\n",
"1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
"6. We also did a [blog](https://huggingface.co./blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co./docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
"\n",
"<div class=\"align-center\">\n",
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord.png\" width=\"145\"></a>\n",
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Support our work if you can! Thanks!\n",
"</div>"
],
"metadata": {
"id": "Zt9CHJqO6p30"
}
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |