--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true base_model: runwayml/stable-diffusion-v1-5 --- # Text-to-image finetuning - ArslanRobo/ModernArt1948-model This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **ArslanRobo/ModernArt1948** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['=', 'Background: Comrade, Head And Neck Side: Irani, Face Side: Orphan, Bust: Gypsy_Queen, Hair Side: Blank, Head Accessory: Blank, Second Necklace: Comrade, Necklace: Blank, Baby: Blank']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("ArslanRobo/ModernArt1948-model", torch_dtype=torch.float16) prompt = "=" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 6 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: fp16 # ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]