File size: 1,281 Bytes
7dd144d eea7da8 7dd144d 029adf2 7dd144d e951eae 7dd144d eea7da8 7dd144d e951eae 7dd144d eea7da8 7dd144d eea7da8 7dd144d 029adf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: bart_samsum
results: []
datasets:
- samsum
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_samsum
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the [samsum](https://huggingface.co./datasets/samsum) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4947
- Rouge1: 53.3294
- Rouge2: 28.6009
- Rougel: 44.2008
- Rougelsum: 49.2031
- Bleu: 0.0
- Meteor: 0.4887
- Gen Len: 30.1209
Comparison between
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |