File size: 1,281 Bytes
7dd144d
 
 
 
 
 
 
eea7da8
7dd144d
 
 
029adf2
 
 
7dd144d
 
 
 
 
 
 
e951eae
7dd144d
eea7da8
 
 
 
 
 
 
 
7dd144d
e951eae
7dd144d
 
 
 
 
 
 
 
 
 
 
 
eea7da8
7dd144d
 
 
 
 
eea7da8
7dd144d
 
029adf2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: bart_samsum
  results: []
datasets:
- samsum
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_samsum

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the [samsum](https://huggingface.co./datasets/samsum) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4947
- Rouge1: 53.3294
- Rouge2: 28.6009
- Rougel: 44.2008
- Rougelsum: 49.2031
- Bleu: 0.0
- Meteor: 0.4887
- Gen Len: 30.1209

Comparison between 

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1