File size: 1,881 Bytes
dcdde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: Ariffiq99/e_care_xlm_roberta_base_finetuned
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: CRAB_e_care_xlm_roberta_base_finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CRAB_e_care_xlm_roberta_base_finetuned

This model is a fine-tuned version of [Ariffiq99/e_care_xlm_roberta_base_finetuned](https://huggingface.co./Ariffiq99/e_care_xlm_roberta_base_finetuned) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9369
- F1: 0.7347

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1954        | 1.0   | 2880  | 1.0072          | 0.6903 |
| 1.0235        | 2.0   | 5760  | 1.0545          | 0.7194 |
| 1.024         | 3.0   | 8640  | 1.0735          | 0.7014 |
| 0.7573        | 4.0   | 11520 | 0.9582          | 0.7222 |
| 1.0331        | 5.0   | 14400 | 0.8937          | 0.7375 |
| 0.8141        | 6.0   | 17280 | 0.8675          | 0.7389 |
| 0.7998        | 7.0   | 20160 | 0.9069          | 0.7306 |
| 0.8059        | 8.0   | 23040 | 0.9369          | 0.7347 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1