File size: 1,993 Bytes
408a8aa 5d268ac 63b70e4 5d268ac 408a8aa f6e5a9c 5f0a887 63b70e4 28a09d6 6acf519 5d268ac 408a8aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Apv/Flaubert2704_v1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Apv/Flaubert2704_v1
This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co./flaubert/flaubert_base_cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6198
- Validation Loss: 0.6599
- Train Accuracy: 0.7333
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 804, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9034 | 0.7880 | 0.5956 | 0 |
| 0.7819 | 0.7210 | 0.6933 | 1 |
| 0.6369 | 0.6599 | 0.7333 | 2 |
| 0.6341 | 0.6599 | 0.7333 | 3 |
| 0.6243 | 0.6599 | 0.7333 | 4 |
| 0.6198 | 0.6599 | 0.7333 | 5 |
### Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3
|