Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This repo contains the fune-tuned version of [ai-forever/rugpt3medium_based_on_gpt2](https://huggingface.co/ai-forever/rugpt3medium_based_on_gpt2)? which can generate poetry from keywords in style of Pushkin, Mayakovsky, Esenin, Blok and Tyutchev.
|
2 |
+
|
3 |
+
To use this model, you can do this:
|
4 |
+
|
5 |
+
```
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
|
8 |
+
def generate_poetry(input: str, model, num_beams=3):
|
9 |
+
input = input if len(input) > 0 else tokenizer.bos_token
|
10 |
+
input_ids = tokenizer.encode(input, return_tensors="pt").to(device)
|
11 |
+
# Create an attention mask
|
12 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).float()
|
13 |
+
|
14 |
+
# Set the pad_token_id
|
15 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
16 |
+
with torch.no_grad():
|
17 |
+
out = model.generate(input_ids,
|
18 |
+
do_sample=True,
|
19 |
+
num_beams=num_beams,
|
20 |
+
temperature=2.0,
|
21 |
+
top_p=0.9,
|
22 |
+
max_length = 200,
|
23 |
+
eos_token_id=tokenizer.eos_token_id,
|
24 |
+
bos_token_id=tokenizer.bos_token_id,
|
25 |
+
attention_mask=attention_mask
|
26 |
+
).to(device)
|
27 |
+
return tokenizer.batch_decode(out, skip_special_tokens=True)[0]
|
28 |
+
|
29 |
+
path = 'AnyaSchen/rugpt3-medium-keywords2poetry'
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(path).to(device)
|
32 |
+
|
33 |
+
inp = 'Автор: Маяковский\nКлючевые слова:<write your keywords>'
|
34 |
+
print(generate_poetry(inp, model))
|
35 |
+
```
|