--- datasets: - AnyaSchen/image2music_abc tags: - music - image --- This repo contains model for music generation from images. The generated music returns in ABC format and it can be sound for example [here](https://editor.drawthedots.com/). Note, that you need to correct BPM (this is speed) to make music more logical and natural. The model is fune-tuned concatecation of two pre-trained models: [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) as encoder and [sander-wood/text-to-music](sander-wood/text-to-music) as decoder. To use this model you can write this: ``` from PIL import Image import requests from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTImageProcessor def generate_music(model, image, tokenizer): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) generated_tokens = model.generate( pixel_values, max_length=300, num_beams=5, top_p=0.8, temperature=2.0, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) generated_music = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) return generated_music path = 'AnyaSchen/image2music' fine_tuned_model = VisionEncoderDecoderModel.from_pretrained(path).to(device) feature_extractor = ViTImageProcessor.from_pretrained(path) tokenizer = AutoTokenizer.from_pretrained(path) url = 'https://anandaindia.org/wp-content/uploads/2018/12/happy-man.jpg' image = Image.open(requests.get(url, stream=True).raw) generated_music = generate_music(fine_tuned_model, image, tokenizer) print(generated_music) ```