--- base_model: camembert/camembert-base-ccnet tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert_ccnet_classification_tools_qlora-8bit_fr results: [] --- # camembert_ccnet_classification_tools_qlora-8bit_fr This model is a fine-tuned version of [camembert/camembert-base-ccnet](https://huggingface.co./camembert/camembert-base-ccnet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4541 - Accuracy: 0.825 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5754 | 1.0 | 7 | 1.4661 | 0.85 | 0.0001 | | 1.5602 | 2.0 | 14 | 1.4618 | 0.85 | 0.0000 | | 1.5649 | 3.0 | 21 | 1.4541 | 0.825 | 0.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1