File size: 2,524 Bytes
3dc48df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---

library_name: transformers
license: apache-2.0
base_model: bookbot/distil-ast-audioset
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distil-ast-audioset-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.88
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil-ast-audioset-finetuned-gtzan

This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co./bookbot/distil-ast-audioset) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4571
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| 1.2835        | 1.0   | 113  | 0.5740          | 0.81     |

| 0.5488        | 2.0   | 226  | 1.0325          | 0.7      |

| 0.1387        | 3.0   | 339  | 0.5598          | 0.83     |

| 0.1349        | 4.0   | 452  | 0.6450          | 0.85     |

| 0.0028        | 5.0   | 565  | 0.6308          | 0.86     |

| 0.0042        | 6.0   | 678  | 0.6233          | 0.87     |

| 0.0005        | 7.0   | 791  | 0.4441          | 0.88     |

| 0.0002        | 8.0   | 904  | 0.4820          | 0.88     |

| 0.0002        | 9.0   | 1017 | 0.4507          | 0.88     |

| 0.0002        | 10.0  | 1130 | 0.4571          | 0.88     |





### Framework versions



- Transformers 4.46.2

- Pytorch 2.5.1+cu121

- Datasets 3.1.0

- Tokenizers 0.20.3