File size: 6,409 Bytes
8f039fa 728ea10 8f039fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
model-index:
- name: llama3-chat_1M
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-chat_1M
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co./unsloth/llama-3-8b-Instruct-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3835, 39.5 bleu on PhoMT test en-vi, 34.4 on IWSLT15
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.6092 | 0.032 | 500 | 1.4727 |
| 1.539 | 0.064 | 1000 | 1.4609 |
| 1.5211 | 0.096 | 1500 | 1.4528 |
| 1.5228 | 0.128 | 2000 | 1.4453 |
| 1.5106 | 0.16 | 2500 | 1.4431 |
| 1.5023 | 0.192 | 3000 | 1.4393 |
| 1.506 | 0.224 | 3500 | 1.4377 |
| 1.4887 | 0.256 | 4000 | 1.4342 |
| 1.4942 | 0.288 | 4500 | 1.4334 |
| 1.4826 | 0.32 | 5000 | 1.4307 |
| 1.4895 | 0.352 | 5500 | 1.4269 |
| 1.4854 | 0.384 | 6000 | 1.4249 |
| 1.4799 | 0.416 | 6500 | 1.4246 |
| 1.4837 | 0.448 | 7000 | 1.4227 |
| 1.4766 | 0.48 | 7500 | 1.4223 |
| 1.4799 | 0.512 | 8000 | 1.4206 |
| 1.4728 | 0.544 | 8500 | 1.4177 |
| 1.4753 | 0.576 | 9000 | 1.4173 |
| 1.4705 | 0.608 | 9500 | 1.4153 |
| 1.4679 | 0.64 | 10000 | 1.4159 |
| 1.4646 | 0.672 | 10500 | 1.4163 |
| 1.4601 | 0.704 | 11000 | 1.4135 |
| 1.4648 | 0.736 | 11500 | 1.4113 |
| 1.4618 | 0.768 | 12000 | 1.4109 |
| 1.4644 | 0.8 | 12500 | 1.4096 |
| 1.4593 | 0.832 | 13000 | 1.4084 |
| 1.4629 | 0.864 | 13500 | 1.4080 |
| 1.4565 | 0.896 | 14000 | 1.4079 |
| 1.4502 | 0.928 | 14500 | 1.4043 |
| 1.4558 | 0.96 | 15000 | 1.4024 |
| 1.45 | 0.992 | 15500 | 1.4040 |
| 1.3885 | 1.024 | 16000 | 1.4058 |
| 1.3681 | 1.056 | 16500 | 1.4071 |
| 1.3719 | 1.088 | 17000 | 1.4074 |
| 1.3687 | 1.12 | 17500 | 1.4063 |
| 1.3736 | 1.152 | 18000 | 1.4067 |
| 1.3767 | 1.184 | 18500 | 1.4061 |
| 1.3764 | 1.216 | 19000 | 1.4036 |
| 1.3751 | 1.248 | 19500 | 1.4031 |
| 1.3698 | 1.28 | 20000 | 1.4031 |
| 1.3764 | 1.312 | 20500 | 1.4024 |
| 1.379 | 1.3440 | 21000 | 1.4012 |
| 1.3758 | 1.376 | 21500 | 1.3990 |
| 1.3764 | 1.408 | 22000 | 1.3996 |
| 1.3715 | 1.44 | 22500 | 1.3982 |
| 1.3775 | 1.472 | 23000 | 1.3976 |
| 1.3719 | 1.504 | 23500 | 1.3974 |
| 1.3745 | 1.536 | 24000 | 1.3973 |
| 1.3704 | 1.568 | 24500 | 1.3961 |
| 1.3659 | 1.6 | 25000 | 1.3950 |
| 1.3665 | 1.6320 | 25500 | 1.3947 |
| 1.3628 | 1.6640 | 26000 | 1.3923 |
| 1.367 | 1.696 | 26500 | 1.3915 |
| 1.3616 | 1.728 | 27000 | 1.3899 |
| 1.3671 | 1.76 | 27500 | 1.3891 |
| 1.3651 | 1.792 | 28000 | 1.3884 |
| 1.3609 | 1.8240 | 28500 | 1.3872 |
| 1.3647 | 1.8560 | 29000 | 1.3871 |
| 1.3595 | 1.888 | 29500 | 1.3852 |
| 1.3579 | 1.92 | 30000 | 1.3845 |
| 1.3575 | 1.952 | 30500 | 1.3837 |
| 1.3576 | 1.984 | 31000 | 1.3835 |
| 1.3102 | 2.016 | 31500 | 1.3964 |
| 1.2595 | 2.048 | 32000 | 1.3966 |
| 1.2622 | 2.08 | 32500 | 1.3978 |
| 1.2606 | 2.112 | 33000 | 1.3967 |
| 1.2665 | 2.144 | 33500 | 1.3982 |
| 1.2658 | 2.176 | 34000 | 1.3974 |
| 1.2574 | 2.208 | 34500 | 1.3971 |
| 1.2584 | 2.24 | 35000 | 1.3963 |
| 1.2635 | 2.2720 | 35500 | 1.3970 |
| 1.2579 | 2.304 | 36000 | 1.3956 |
| 1.2633 | 2.336 | 36500 | 1.3956 |
| 1.2602 | 2.368 | 37000 | 1.3952 |
| 1.2597 | 2.4 | 37500 | 1.3953 |
| 1.2635 | 2.432 | 38000 | 1.3948 |
| 1.2646 | 2.464 | 38500 | 1.3947 |
| 1.2609 | 2.496 | 39000 | 1.3946 |
| 1.2562 | 2.528 | 39500 | 1.3941 |
| 1.2586 | 2.56 | 40000 | 1.3943 |
| 1.2604 | 2.592 | 40500 | 1.3940 |
| 1.2636 | 2.624 | 41000 | 1.3940 |
| 1.2635 | 2.656 | 41500 | 1.3940 |
| 1.2587 | 2.6880 | 42000 | 1.3938 |
| 1.2603 | 2.7200 | 42500 | 1.3939 |
| 1.2592 | 2.752 | 43000 | 1.3937 |
| 1.2568 | 2.784 | 43500 | 1.3934 |
| 1.2595 | 2.816 | 44000 | 1.3936 |
| 1.2565 | 2.848 | 44500 | 1.3935 |
| 1.2585 | 2.88 | 45000 | 1.3936 |
| 1.2624 | 2.912 | 45500 | 1.3933 |
| 1.2581 | 2.944 | 46000 | 1.3934 |
| 1.2571 | 2.976 | 46500 | 1.3934 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1 |