File size: 2,250 Bytes
31f5059 78ea665 31f5059 78ea665 31f5059 78ea665 31f5059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
model-index:
- name: llama3-chat_10000_500
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-chat_10000_500
This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co./unsloth/llama-3-8b-Instruct-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.765 | 0.33 | 104 | 1.4841 |
| 1.5146 | 0.67 | 208 | 1.4604 |
| 1.4912 | 1.0 | 312 | 1.4545 |
| 1.3584 | 1.33 | 416 | 1.4698 |
| 1.358 | 1.66 | 520 | 1.4671 |
| 1.3483 | 2.0 | 624 | 1.4637 |
| 1.1105 | 2.33 | 728 | 1.5471 |
| 1.101 | 2.66 | 832 | 1.5512 |
| 1.1007 | 3.0 | 936 | 1.5522 |
| 0.8526 | 3.33 | 1040 | 1.7081 |
| 0.8445 | 3.66 | 1144 | 1.7156 |
| 0.8463 | 3.99 | 1248 | 1.7115 |
| 0.6865 | 4.33 | 1352 | 1.8423 |
| 0.6811 | 4.66 | 1456 | 1.8458 |
| 0.6859 | 4.99 | 1560 | 1.8491 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.2 |