--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: train args: default metrics: - type: accuracy value: 0.855973597359736 name: Accuracy --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.5152 - Accuracy: 0.8560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8353 | 1.0 | 133 | 0.6692 | 0.8168 | | 0.702 | 2.0 | 266 | 0.5892 | 0.8393 | | 0.6419 | 2.99 | 399 | 0.5615 | 0.8455 | | 0.5742 | 4.0 | 533 | 0.5297 | 0.8535 | | 0.4942 | 4.99 | 665 | 0.5152 | 0.8560 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3 [notebook](https://github.com/andysingal/CV_public/blob/main/Image-classification/notebooks/image_classification_peft_lora.ipynb)