Androidonnxfork commited on
Commit
40588a2
1 Parent(s): 4217060

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +9 -0
  2. patchedstabledifftoonnx/LICENSE +674 -0
  3. patchedstabledifftoonnx/README.md +293 -0
  4. patchedstabledifftoonnx/README4GB.md +136 -0
  5. patchedstabledifftoonnx/conv_sd_to_onnx.py +658 -0
  6. patchedstabledifftoonnx/dance_pose.png +0 -0
  7. patchedstabledifftoonnx/input_image_vermeer.png +0 -0
  8. patchedstabledifftoonnx/pipeline_onnx_stable_diffusion_controlnet.py +472 -0
  9. patchedstabledifftoonnx/pipeline_onnx_stable_diffusion_instruct_pix2pix.py +553 -0
  10. patchedstabledifftoonnx/pix2pixUI.py +53 -0
  11. patchedstabledifftoonnx/quant.py +0 -0
  12. patchedstabledifftoonnx/quantization.py +1 -0
  13. patchedstabledifftoonnx/requirements.txt +14 -0
  14. patchedstabledifftoonnx/run-batch.md +50 -0
  15. patchedstabledifftoonnx/run-batch.py +330 -0
  16. patchedstabledifftoonnx/sd_env/bin/python +3 -0
  17. patchedstabledifftoonnx/sd_env/bin/python3 +3 -0
  18. patchedstabledifftoonnx/sd_env/bin/python3.10 +3 -0
  19. patchedstabledifftoonnx/sd_env/pyvenv.cfg +3 -0
  20. patchedstabledifftoonnx/stable-diffusion-streamlit/.dockerignore +6 -0
  21. patchedstabledifftoonnx/stable-diffusion-streamlit/.github/workflows/build-image.yml +16 -0
  22. patchedstabledifftoonnx/stable-diffusion-streamlit/.gitignore +6 -0
  23. patchedstabledifftoonnx/stable-diffusion-streamlit/LICENSE +254 -0
  24. patchedstabledifftoonnx/stable-diffusion-streamlit/README.md +114 -0
  25. patchedstabledifftoonnx/stable-diffusion-streamlit/README_CN.md +111 -0
  26. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use1.gif +3 -0
  27. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use2.gif +3 -0
  28. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use3.gif +3 -0
  29. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/onnx.png +0 -0
  30. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/onnxquantized.png +0 -0
  31. patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/torch.png +0 -0
  32. patchedstabledifftoonnx/stable-diffusion-streamlit/docker/build.sh +15 -0
  33. patchedstabledifftoonnx/stable-diffusion-streamlit/docker/docker-compose.yaml +15 -0
  34. patchedstabledifftoonnx/stable-diffusion-streamlit/docker/dockerfile +21 -0
  35. patchedstabledifftoonnx/stable-diffusion-streamlit/docker/entrypoint.sh +1 -0
  36. patchedstabledifftoonnx/stable-diffusion-streamlit/docker/requirements.txt +7 -0
  37. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/entrypoint.sh +1 -0
  38. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/__init__.py +0 -0
  39. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/copy_pb.py +17 -0
  40. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/download_onnx.py +22 -0
  41. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/inference.py +40 -0
  42. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.onnx +3 -0
  43. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.onnx.data +3 -0
  44. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.ort +3 -0
  45. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.with_runtime_opt.ort +3 -0
  46. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/required_operators.config +12 -0
  47. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/required_operators.with_runtime_opt.config +11 -0
  48. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/prepare.py +10 -0
  49. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/quantization.py +28 -0
  50. patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/thread.py +27 -0
.gitattributes CHANGED
@@ -51,3 +51,12 @@ fp16onnxquantizedsd_in_ort/cyberrealistic/model.ort filter=lfs diff=lfs merge=lf
51
  fp16onnxquantizedsd_in_ort/cyberrealistic/model.with_runtime_opt.ort filter=lfs diff=lfs merge=lfs -text
52
  fp16onnxquantizedsd_textencoder_in_ort/cyberrealistic/model.ort filter=lfs diff=lfs merge=lfs -text
53
  fp16onnxquantizedsd_textencoder_in_ort/cyberrealistic/model.with_runtime_opt.ort filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
51
  fp16onnxquantizedsd_in_ort/cyberrealistic/model.with_runtime_opt.ort filter=lfs diff=lfs merge=lfs -text
52
  fp16onnxquantizedsd_textencoder_in_ort/cyberrealistic/model.ort filter=lfs diff=lfs merge=lfs -text
53
  fp16onnxquantizedsd_textencoder_in_ort/cyberrealistic/model.with_runtime_opt.ort filter=lfs diff=lfs merge=lfs -text
54
+ patchedstabledifftoonnx/sd_env/bin/python filter=lfs diff=lfs merge=lfs -text
55
+ patchedstabledifftoonnx/sd_env/bin/python3 filter=lfs diff=lfs merge=lfs -text
56
+ patchedstabledifftoonnx/sd_env/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
57
+ patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use1.gif filter=lfs diff=lfs merge=lfs -text
58
+ patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use2.gif filter=lfs diff=lfs merge=lfs -text
59
+ patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use3.gif filter=lfs diff=lfs merge=lfs -text
60
+ patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.onnx.data filter=lfs diff=lfs merge=lfs -text
61
+ patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.ort filter=lfs diff=lfs merge=lfs -text
62
+ patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.with_runtime_opt.ort filter=lfs diff=lfs merge=lfs -text
patchedstabledifftoonnx/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
patchedstabledifftoonnx/README.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Stable Diffusion using ONNX, FP16 and DirectML
2
+
3
+ This repository contains a conversion tool, some examples, and instructions on how to set up Stable Diffusion with ONNX models.
4
+ This was mainly intended for use with AMD GPUs but should work just as well with other DirectML devices (e.g. Intel Arc).
5
+ I'd be very interested to hear of any results with Intel Arc.
6
+
7
+ **MOST IMPORTANT RECENT UPDATES:**
8
+ **- ONNX Runtime 1.15 has been released! Updated model tuning code to better align with ORT.**
9
+ **- Realigned with latest version of diffusers, we were forced to switch to torch 2.1 nightly! (Install instructions updated accordingly)**
10
+ **- I have enabled GitHub discussions: If you have a generic question rather than an issue, start a discussion!**
11
+
12
+ This focuses specifically on making it easy to get FP16 models. When using FP16, the VRAM footprint is significantly reduced and speed goes up.
13
+
14
+ It's all fairly straightforward, but It helps to be comfortable with command line.
15
+
16
+ You can use these instructions to convert models to FP16 and then use them in any tool that allows you to load ONNX models.
17
+ We'll demonstrate this by downloading and setting up ONNXDiffusersUI specifically for use with our installation (no need to follow the ONNXDiffusersUI setup).
18
+
19
+ ## Set up
20
+
21
+ First make sure you have Python 3.10 (or 3.11) installed. You can get it here: https://www.python.org/downloads/
22
+ **NOTE:** 3.10 is still the preferred version. Since the release of ONNX Runtime 1.15 all requirements now have proper Python 3.11 support but conversion is extremely slow on 3.11.
23
+
24
+ If you don't have git, get it here: https://gitforwindows.org/
25
+
26
+ Pick a directory that can contain your Stable Diffusion installation (make sure you've the diskspace to store the models).
27
+ Open the commandline (Powershell or Command Prompt) and change into the directory you will use.
28
+
29
+ Start by cloning this repository:
30
+ ```
31
+ git clone https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16
32
+ cd Stable-Diffusion-ONNX-FP16
33
+ ```
34
+
35
+ Do the following:
36
+ ```
37
+ pip install virtualenv
38
+ python -m venv sd_env
39
+ sd_env\scripts\activate
40
+ python -m pip install --upgrade pip
41
+ pip install torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu --pre
42
+ pip install -r requirements.txt
43
+ ```
44
+
45
+ Now first make sure you have an account on https://huggingface.co/
46
+ When you do make sure to create a token on https://huggingface.co/settings/tokens
47
+ And then on the commandline login using following command
48
+ ```
49
+ huggingface-cli login
50
+ ```
51
+
52
+ Now you're ready to download and convert models. Before we explain this, just a pointer on future use.
53
+ Whenever you want to make use of this post set up, open a command line, change into the directory and enable the environment.
54
+ Say that you installed this on your D: drive in the root. You would open command line and then:
55
+ ```
56
+ d:
57
+ cd Stable-Diffusion-ONNX-FP16
58
+ sd_env\scripts\activate
59
+ ```
60
+
61
+ Remember this for whenver you want to use your installation. Let's now get to the fun part and convert some models:
62
+ ```
63
+ mkdir model
64
+ python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1-base" --output_path "./model/sd2_1base-fp32"
65
+ python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1-base" --output_path "./model/sd2_1base-fp16" --fp16
66
+ ```
67
+
68
+ You now have 2 models. These are geared towards creating 512x512 images.
69
+
70
+ Now we'll run our test script twice:
71
+ ```
72
+ python test-txt2img.py --model "model\sd2_1base-fp32" --size 512 --seed 0
73
+ python test-txt2img.py --model "model\sd2_1base-fp16" --size 512 --seed 0
74
+ ```
75
+
76
+ You should now have 2 similar pictures. Note that there'll be differences between FP32 and FP16. But FP16 should not be specifically worse than FP32.
77
+ The accuracy just shifts things a bit, but it may just as well shift them for the better.
78
+
79
+ Next let's do 768x768. This requires your card to have enough VRAM but we'll make a VRAM friendly version too.
80
+ Here we aren't bothering with FP32 because it just requires too much VRAM.
81
+ ```
82
+ python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1" --output_path "./model/sd2_1-fp16" --fp16
83
+ python test-txt2img.py --model "model\sd2_1-fp16" --size 768 --seed 0
84
+ ```
85
+
86
+ You should now have a 768x768 picture.
87
+
88
+ This will work fine on 12GB VRAM and above but 8GB may already be a stretch. The more VRAM friendly version is next.
89
+
90
+ This method uses less VRAM and will be slightly slower when you're not VRAM limited. But, it'll allow you to use far larger resolutions than standard models.
91
+ The output will be slightly different but should not be specifically worse. If you got the VRAM, see how well size 1024 works!
92
+
93
+ ```
94
+ python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1" --output_path "./model/sd2_1-fp16-autoslicing" --fp16 --attention-slicing auto
95
+ python test-txt2img.py --model "model\sd2_1-fp16-autoslicing" --size 768 --seed 0
96
+ ```
97
+
98
+ Now that we've got everything working and we can create pictures, let's get a GUI. We'll use ONNXDiffusersUI but make it so it doesn't break our workflow.
99
+ First we clone the repository:
100
+ ```
101
+ git clone https://github.com/Amblyopius/OnnxDiffusersUI
102
+ ```
103
+ Now we run the UI
104
+ ```
105
+ python OnnxDiffusersUI\onnxUI.py
106
+ ```
107
+ It'll take some time to load and then in your browser you can go to http://127.0.0.1:7860 (only accessible on the host you're running it).
108
+ If you're done you can go back to the CMD window and press Ctrl+C and it will quit.
109
+
110
+ Note that it expects your models to be in the model directory (which is why we put them there in the instructions).
111
+ You can find your history and all the pictures you created in the directory called output.
112
+
113
+ If you want to learn more about the UI be sure to visit https://github.com/azuritecoin/OnnxDiffusersUI
114
+ NOTE: We are using a fork as it simplifies keeping it aligned with our own updates
115
+
116
+ ## Advanced features
117
+ ### Support for ControlNet
118
+ ControlNet was recently introduced. It allows conditional control on Text-to-Image Diffusion Models. If you want more in-depth information,
119
+ get it here: https://github.com/lllyasviel/ControlNet
120
+
121
+ As it has now been added to Diffusers I've added a fairly "elegant" ONNX implementation.
122
+
123
+ The idea behind the implementation is:
124
+ - We use the same single tool to convert models
125
+ - We can load the Pipeline from disk by referencing a single model
126
+
127
+ This has only 1 downside, it is not the most disk friendly solution as you'll get some duplication.
128
+ We may eventually have to opt for a different disk layout for ONNX models.
129
+
130
+ The current implementation consists of a simple demo. More to follow soon!
131
+
132
+ First let's get ourselves a working model:
133
+ ```
134
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_ft_mse-autoslicing-cn_canny" --controlnet_path "lllyasviel/sd-controlnet-canny" --fp16 --attention-slicing auto --vae_path "stabilityai/sd-vae-ft-mse"
135
+ ```
136
+ This model is an SD 1.5 model combined with Controlnet Canny. Now let's run the test script:
137
+ ```
138
+ python test-controlnet-canny.py
139
+ ```
140
+ Once the test is done you'll have an image called controlnet-canny-test.png.
141
+ The new image is entirely different but the shape is very similar to the original input image.
142
+
143
+ You can look at the test-controlnet-canny.py to see how it works.
144
+
145
+ Next we'll use openpose. Note that the example is a demanding pose that you would ordinarily probably not go for.
146
+ Without tweaking this also suffers a bit from bad hands/feet. For the sake of the test I decided to tolerate it.
147
+ Let's make a ControlNet OpenPose model:
148
+ ```
149
+ python conv_sd_to_onnx.py --model_path "Linaqruf/anything-v3.0" --output_path "./model/anyv3-fp16-autoslicing-cn_openpose" --controlnet_path "lllyasviel/sd-controlnet-openpose" --fp16 --attention-slicing auto
150
+ ```
151
+ And now let's run the test:
152
+ ```
153
+ python test-controlnet-openpose.py
154
+ ```
155
+ This gives you controlnet-openpose-test.png
156
+
157
+ As some may wonder where I got the openpose startpoint image from. I used https://zhuyu1997.github.io/open-pose-editor/
158
+ Create the pose.
159
+ Press the button underneath height, then download the generated map on the left.
160
+ You can further edit it locally to fit the canvas in the way you want it to.
161
+
162
+ ### Support for Instruct pix2pix
163
+ Recently a special Stable Diffusion model was released, allowing you to have AI edit images based on instructions.
164
+ Make sure you read the original documentation here: https://www.timothybrooks.com/instruct-pix2pix
165
+
166
+ A pipeline was added to diffusers, but currently Huggingface does not add ONNX equivalents.
167
+ In this repository I included the required ONNX pipeline and a basic UI (to simplify testing before it gets added to ONNXDiffusersUI)
168
+
169
+ You can convert the model using this command (it'll fetch it from huggingface):
170
+ ```
171
+ python conv_sd_to_onnx.py --model_path "timbrooks/instruct-pix2pix" --output_path "./model/ip2p-base-fp16-vae_ft_mse-autoslicing" --vae_path "stabilityai/sd-vae-ft-mse" --fp16 --attention-slicing auto
172
+ ```
173
+ Once converted you can run the included UI like this:
174
+ ```
175
+ python pix2pixUI.py
176
+ ```
177
+ You'll need an image to start from (you can always create one with Stable Diffusion) and then you can test the pipeline.
178
+ This first version is _very_ basic and you'll need to save the results (when you want them) using "save image as" in your browser.
179
+
180
+ ### Use alternative VAE
181
+ Some models will suggest using an alternative VAE.
182
+ It's possible to copy the model.onnx from an existing directory and put it in another one, but you may want to keep the conversion command line you use for reference.
183
+ To simplify the task of using an alternative VAE you can now pass it as part of the conversion command.
184
+
185
+ Say you want to have SD1.5 but with the updated MSE VAE that was released later and is the result of further training. You can do it like this:
186
+ ```
187
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_ft_mse" --vae_path "stabilityai/sd-vae-ft-mse" --fp16
188
+ ```
189
+
190
+ You can also load a vae from a full model on huggingface. You add /vae to make that clear. Say you need the VAE from Anything v3.0:
191
+ ```
192
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_anythingv3" --vae_path "Linaqruf/anything-v3.0/vae" --fp16
193
+ ```
194
+
195
+ Or if the model is on your local disk, you can just use the local directory. Say you have stable-diffusion 2.1 base on disk, you could it like this:
196
+ ```
197
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_2_1" --vae_path "stable-diffusion-2-1-base/vae" --fp16
198
+ ```
199
+
200
+ ### Clip Skip
201
+ For some models people will suggest using "Clip Skip" for better results. As we can't arbitrarily change this with ONNX, we need to decide on it at model creation.
202
+ Therefore there's --clip-skip which you can set to 2, 3 or 4.
203
+
204
+ Example:
205
+ ```
206
+ python conv_sd_to_onnx.py --model_path "Linaqruf/anything-v3.0" --output_path "./model/anythingv3_fp16_cs2" --fp16 --clip-skip 2
207
+ ```
208
+
209
+ Clip Skip results in a change to the Text Encoder.
210
+ To stay compatible with other implementations we use the same numbering where 1 is the default behaviour and 2 skips 1 layer.
211
+ This ensures that you see similar behaviour to other implementations when setting the same number for Clip Skip.
212
+
213
+ ### Reducing VRAM usage
214
+ While FP16 already uses a lot less VRAM, you may still run into VRAM issues. The easiest solution is to load the Text Encoder on CPU rather than GPU. The Text Encoder is only used as part of prompt parsing and not during the iterations.
215
+ You can expect some additional latency when the Text Encoder is on CPU, but this will be fairly minor as it is not compute intensive. You also gain more than that back during the iterations if you're near your VRAM limit.
216
+ You'll bump into VRAM limits when it is limited (8GB or less), or you're trying to use a 768x768 model.
217
+
218
+ In test-txt2img.py you can see how this works. You can pass --cpu-textenc and it will load the Text Encoder on CPU. This is how it's done:
219
+ ```
220
+ cputextenc=OnnxRuntimeModel.from_pretrained(args.model+"/text_encoder")
221
+ pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model, provider="DmlExecutionProvider", text_encoder=cputextenc)
222
+ ```
223
+ You can use this in your own code when needed. OnnxDiffusersUI supports --cpu-textenc too.
224
+
225
+ In extreme circumstances you can also try to load VAE on CPU. This is likely to be only of use for cards that have limited VRAM. The need to load VAE on CPU can be identified when generation crashes after the steps.
226
+ So if it goes through all the steps but then crashes when it needs to save the final image, VAE is your issue. If it crashes before steps is finished, changes to where VAE is loaded are unlikely to make much of a difference.
227
+ **You can pass --cpuvae to test-txt2img.py to load VAE on CPU (this will always also load CLIP on CPU).**
228
+ Note that having VAE loaded on CPU is CPU intensive (far more than CLIP is) and you'll see RAM use spike.
229
+
230
+ ### Conversion of .ckpt / .safetensors
231
+ Did your model come as a single file ending in .safetensors or .ckpt? Don't worry, with the 0.12.0 release of diffusers I can now use diffusers to load these directly. I have updated (and renamed) the conversion tool and it
232
+ will convert directly from .ckpt to ONNX.
233
+
234
+ This is probably the most requested feature as many of you have used https://www.civitai.com/ and have found the conversion process a bit cumbersome.
235
+
236
+ To properly convert a file you do need a .yaml config file. Ideally this should be included but if not you're advised to try with the v1-inference.yaml included in this repository.
237
+ To convert a model you'd then do:
238
+ ```
239
+ python conv_sd_to_onnx.py --model_path ".\downloaded.ckpt" --output_path "./model/downloaded-fp16" --ckpt-original-config-file downloaded.yaml --fp16
240
+ ```
241
+ If it did not come with a .yaml config file, try with v1-inference.yaml.
242
+
243
+ If you have a choice between .safetensors and .ckpt, go for .safetensors. In theory a .ckpt file can contain malicious code. I have not seen any reports of this happening but it's better to be safe than sorry.
244
+
245
+ The conversion tool also has additional parameters you can set when converting from .ckpt/.safetensors. The best way to find all the parameters is by doing:
246
+ ```
247
+ python conv_sd_to_onnx.py --help
248
+ ```
249
+ You should generally not need these but some advanced users may want to have them just in case.
250
+
251
+ ## FAQ
252
+ ### Do the converted models work with other ONNX DirectML based implementations?
253
+ While not tested extensively: yes they should! They are not full FP16, at the interface level they are the same as FP32.
254
+ They are completely valid drop in replacements and transparently run in FP16 on ORT DirectML.
255
+ This makes it possible to run both FP16 and FP32 models with the exact same code.
256
+
257
+ ### Can I convert non-official models?
258
+ You should be able to convert any model. Most of the models can be found on https://huggingface.co/, but you may prefer using https://civitai.com/ instead.
259
+ It's generally better to start from a model in diffusers form but if you only have the .ckpt/.safetensors file you now have instructions on how to convert these directly into ONNX.
260
+
261
+ ### Does this work for inpainting / img2img?
262
+ Yes, it has been tested on the inpainting models and it works fine. Just like with txt2img, replacement is transparent as the interface is FP32.
263
+ Additional example scripts may be added in the future to demonstrate inpainting in code. For now mainly useful for use with OnnxDiffusersUI
264
+
265
+ ### Why is Euler Ancestral not giving me the same image if I provide a seed?
266
+ Due to how Euler Ancestral works, it adds noise as part of the scheduler that is apparently non-deterministic when interacting with ONNX diffusers pipeline.
267
+ A clean ONNX implementation without diffusers, torch ... would likely be faster and bug free but it's a lot of work and it would not match SHARK.
268
+ Best advice is to live with it and to switch to SHARK as soon as your wished for feature is available there. For more on SHARK see the next answer.
269
+
270
+ ### This is still too slow / taxing on my VRAM
271
+ Make sure to close as many applications as possible when running FP32 or 768x768 FP16 models.
272
+ On my 6700XT I can do 768x768 at 1.2s/it but only if I close all applications.
273
+ If I don't close enough applications, it very quickly goes beyond 2s/it.
274
+
275
+ Also consider following https://github.com/nod-ai/SHARK which provides accelerated ML on AMD via MLIR/IREE.
276
+ It (currently) lacks features and flexibility but it has a faster and more VRAM efficient Stable Diffusion implementation than we can currently get on ONNX.
277
+ The current motto also is "Things move fast" which means that in a single day you may get both new features and performance boosts. (On my 6700XT SHARK is close to being twice as fast as ONNX FP16!)
278
+ There's also an onnxdiffusers channel on the Discord where you can ask for help if you want to stick to ONNX for a bit longer. We'll convert you to a dedicated SHARK user there.
279
+
280
+ If you are an advanced AMD user, switch to Linux+ROCm. It'll be faster and you can use any torch based solution directly.
281
+
282
+ ### Can you share any results?
283
+ On my 6700XT I can get Stable Diffusion 2.1 768x768 down to 1.15s/it and 2.1 base 512x512 to 2.7it/s
284
+ Reported working for Vega56 and doing 512x512 at 1.75it/s
285
+ Reported working for RX 480 8GB and doing 512x512 at 1.75s/it
286
+ Reported working for 5600XT 6GB and doing 512x512 at 1.43s/it (about 4x times faster than using ONNX FP32)
287
+
288
+ ### All these model downloads seem to be eating my main drive's disk space?!
289
+ This is an unfortunate side effect of where the huggingface library stores its cache by default.
290
+ On your main drive go to your users home directory (C:\users\...) and you'll find a .cache directory and in it a directory called huggingface.
291
+ Point an environment variable HF_HOME towards where you want to have it store things instead.
292
+ (You can probably move the existing directory to a different drive and point HF_HOME towards it but I have not tested this ...)
293
+ Once resolved you can remove the huggingface directory from .cache
patchedstabledifftoonnx/README4GB.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Stable Diffusion using ONNX, FP16 and DirectML
2
+
3
+ This repository contains a conversion tool, some examples, and instructions on how to set up Stable Diffusion with ONNX models.
4
+
5
+ **These instructions are specifically for people who have only 4GB VRAM**
6
+
7
+ It's all fairly straightforward, but It helps to be comfortable with command line.
8
+
9
+ We'll focus on making all of it work within limited VRAM. This will still include a UI.
10
+
11
+ ## Set up
12
+
13
+ First make sure you have Python 3.10 or 3.11 installed. You can get it here: https://www.python.org/downloads/
14
+
15
+ If you don't have git, get it here: https://gitforwindows.org/
16
+
17
+ Pick a directory that can contain your Stable Diffusion installation (make sure you've the diskspace to store the models).
18
+ Open the commandline (Powershell or Command Prompt) and change into the directory you will use.
19
+
20
+ Start by cloning this repository:
21
+ ```
22
+ git clone https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16
23
+ cd Stable-Diffusion-ONNX-FP16
24
+ ```
25
+
26
+ Do the following:
27
+ ```
28
+ pip install virtualenv
29
+ python -m venv sd_env
30
+ sd_env\scripts\activate
31
+ python -m pip install --upgrade pip
32
+ pip install torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu --pre
33
+ pip install -r requirements.txt
34
+ ```
35
+
36
+ Now first make sure you have an account on https://huggingface.co/
37
+ When you do make sure to create a token on https://huggingface.co/settings/tokens
38
+ And then on the commandline login using following command
39
+ ```
40
+ huggingface-cli login
41
+ ```
42
+
43
+ Now you're ready to download and convert models. Before we explain this, just a pointer on future use.
44
+ Whenever you want to make use of this post set up, open a command line, change into the directory and enable the environment.
45
+ Say that you installed this on your D: drive in the root. You would open command line and then:
46
+ ```
47
+ d:
48
+ cd Stable-Diffusion-ONNX-FP16
49
+ sd_env\scripts\activate
50
+ ```
51
+
52
+ Remember this for whenver you want to use your installation. Let's now get to the fun part and convert a model. This will take some time!
53
+ The extra time spend on creating the model is saved back by having it run fine on 4GB VRAM.
54
+ ```
55
+ mkdir model
56
+ python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1-base" --output_path "./model/sd2_1base-fp16-maxslicing" --fp16 --attention-slicing max
57
+ ```
58
+
59
+ That's your first model. Let's do a test:
60
+
61
+ ```
62
+ python test-txt2img.py --model "model\sd2_1base-fp16-maxslicing" --size 512 --seed 0 --cpu-textenc --cpuvae
63
+ ```
64
+
65
+ You should now have your first picture in the current directory.
66
+
67
+ Now that we've got everything working and we can create pictures, let's get a GUI. We'll use ONNXDiffusersUI but make it so it doesn't break our workflow.
68
+ First we clone the repository:
69
+ ```
70
+ git clone https://github.com/Amblyopius/OnnxDiffusersUI
71
+ ```
72
+ Now we run the UI
73
+ ```
74
+ python OnnxDiffusersUI\onnxUI.py --cpu-textenc --cpu-vaedec
75
+ ```
76
+ It'll take some time to load and then in your browser you can go to http://127.0.0.1:7860 (only accessible on the host you're running it).
77
+ If you're done you can go back to the CMD window and press Ctrl+C and it will quit.
78
+
79
+ Note that it expects your models to be in the model directory (which is why we put them there in the instructions).
80
+ You can find your history and all the pictures you created in the directory called output.
81
+
82
+ If you want to learn more about the UI be sure to visit https://github.com/azuritecoin/OnnxDiffusersUI
83
+
84
+ ## Advanced features
85
+ ### Use alternative VAE
86
+ Some models will suggest using an alternative VAE.
87
+ It's possible to copy the model.onnx from an existing directory and put it in another one, but you may want to keep the conversion command line you use for reference.
88
+ To simplify the task of using an alternative VAE you can now pass it as part of the conversion command.
89
+
90
+ Say you want to have SD1.5 but with the updated MSE VAE that was released later and is the result of further training. You can do it like this:
91
+ ```
92
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_ft_mse" --vae_path "stabilityai/sd-vae-ft-mse" --fp16 --attention-slicing max
93
+ ```
94
+
95
+ You can also load a vae from a full model on huggingface. You add /vae to make that clear. Say you need the VAE from Anything v3.0:
96
+ ```
97
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_anythingv3" --vae_path "Linaqruf/anything-v3.0/vae" --fp16 --attention-slicing max
98
+ ```
99
+
100
+ Or if the model is on your local disk, you can just use the local directory. Say you have stable-diffusion 2.1 base on disk, you could it like this:
101
+ ```
102
+ python conv_sd_to_onnx.py --model_path "runwayml/stable-diffusion-v1-5" --output_path "./model/sd1_5-fp16-vae_2_1" --vae_path "stable-diffusion-2-1-base/vae" --fp16 --attention-slicing max
103
+ ```
104
+
105
+ ### Clip Skip
106
+ For some models people will suggest using "Clip Skip" for better results. As we can't arbitrarily change this with ONNX we need to decide on it at model creation.
107
+ Therefore there's --clip-skip which you can set to 2, 3 or 4.
108
+
109
+ Example:
110
+ ```
111
+ python conv_sd_to_onnx.py --model_path "Linaqruf/anything-v3.0" --output_path "./model/anythingv3_fp16_cs2" --fp16 --clip-skip 2
112
+ ```
113
+
114
+ Clip Skip results in a change to the Text Encoder. To stay compatible with other implementations we use the same numbering where 1 is the default behaviour and 2 skips 1 layer.
115
+ This ensures that you see similar behaviour to other implementations when setting the same number for Clip Skip.
116
+
117
+ ### Conversion of .ckpt / .safetensors
118
+ Did your model come as a single file ending in .safetensors or .ckpt? Don't worry, with the 0.12.0 release of diffusers I can now use diffusers to load these directly. I have updated (and renamed) the conversion tool and it
119
+ will convert directly from .ckpt to ONNX.
120
+
121
+ This is probably the most requested feature as many of you have used https://www.civitai.com/ and have found the conversion process a bit cumbersome.
122
+
123
+ To properly convert a file you do need a .yaml config file. Ideally this should be included but if not you're advised to try with the v1-inference.yaml included in this repository.
124
+ To convert a model you'd then do:
125
+ ```
126
+ python conv_sd_to_onnx.py --model_path ".\downloaded.ckpt" --output_path "./model/downloaded-fp16" --ckpt-original-config-file downloaded.yaml --fp16
127
+ ```
128
+ If it did not come with a .yaml config file, try with v1-inference.yaml.
129
+
130
+ If you have a choice between .safetensors and .ckpt, go for .safetensors. In theory a .ckpt file can contain malicious code. I have not seen any reports of this happening but it's better to be safe than sorry.
131
+
132
+ The conversion tool also has additional parameters you can set when converting from .ckpt/.safetensors. The best way to find all the parameters is by doing:
133
+ ```
134
+ python conv_sd_to_onnx.py --help
135
+ ```
136
+ You should generally not need these but some advanced users may want to have them just in case.
patchedstabledifftoonnx/conv_sd_to_onnx.py ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Copyright 2022 Dirk Moerenhout. All rights reserved.
3
+ #
4
+ # This program is free software: you can redistribute it and/or modify it under the terms
5
+ # of the GNU General Public License as published by the Free Software Foundation,
6
+ # either version 3 of the License, or (at your option) any later version.
7
+ #
8
+ # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9
+ # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
10
+ # See the GNU General Public License for more details.
11
+ #
12
+ # You should have received a copy of the GNU General Public License along with this program. If not,
13
+ # see <https://www.gnu.org/licenses/>.
14
+ #
15
+ # *****
16
+ # NOTE this was originally derived from:
17
+ # https://github.com/huggingface/diffusers/blob/main/scripts/convert_stable_diffusion_checkpoint_to_onnx.py
18
+ #
19
+ # Original file released under Apache License, Version 2.0
20
+ # *****
21
+ #
22
+ # Version history
23
+ # v1.2 First fully working version converting unet to fp16
24
+ # v2.0 Refactored + enabled conversion to fp16 for Text Encoder
25
+ # v2.1 Support for safetensors
26
+ # v2.2 Reduce visible warnings
27
+ # v3.0 You can now provide an alternative VAE
28
+ # v3.1 Align with diffusers 0.12.0
29
+ # v4.0 Support ckpt conversion (--> renamed to conv_sd_to_onnx.py)
30
+ # v5.0 Use ONNX Runtime Transformers for model optimisation
31
+ # v6.0 Support ControlNet
32
+ # v6.1 Support for diffusers 0.15.0
33
+
34
+ import warnings
35
+ import argparse
36
+ import os
37
+ import shutil
38
+ from pathlib import Path
39
+ import json
40
+ import tempfile
41
+ from typing import Union, Optional, Tuple
42
+
43
+ import torch
44
+ from torch.onnx import export
45
+ import safetensors
46
+
47
+ import onnx
48
+ from onnxruntime.transformers.float16 import convert_float_to_float16
49
+ from diffusers.models import AutoencoderKL
50
+ from diffusers import (
51
+ OnnxRuntimeModel,
52
+ OnnxStableDiffusionPipeline,
53
+ StableDiffusionPipeline,
54
+ ControlNetModel,
55
+ UNet2DConditionModel
56
+ )
57
+ from diffusers.models.attention_processor import AttnProcessor
58
+ from diffusers.models.unet_2d_condition import UNet2DConditionOutput
59
+ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
60
+
61
+ # To improve future development and testing, warnings should be limited to what is somewhat useful
62
+ # Truncation warnings are expected as part of FP16 conversion and should not be shown
63
+ warnings.filterwarnings('ignore','.*will be truncated.*')
64
+ # We are ignoring prim::Constant type related warnings
65
+ warnings.filterwarnings('ignore','.*The shape inference of prim::Constant type is missing.*')
66
+
67
+ # ONNX Runtime Transformers offers ONNX model optimisation
68
+ # It does not directly support DirectML but we can use a custom class
69
+ # Based on onnx_model_unet.py in ONNX Runtime Transformers
70
+ from onnx import ModelProto
71
+ from onnxruntime.transformers.onnx_model_unet import UnetOnnxModel
72
+
73
+ class UnetOnnxModelDML(UnetOnnxModel):
74
+ def __init__(self, model: ModelProto, num_heads: int = 0, hidden_size: int = 0):
75
+ """Initialize UNet ONNX Model.
76
+
77
+ Args:
78
+ model (ModelProto): the ONNX model
79
+ num_heads (int, optional): number of attention heads. Defaults to 0 (detect the parameter automatically).
80
+ hidden_size (int, optional): hidden dimension. Defaults to 0 (detect the parameter automatically).
81
+ """
82
+ assert (num_heads == 0 and hidden_size == 0) or (num_heads > 0 and hidden_size % num_heads == 0)
83
+
84
+ super().__init__(model, num_heads=num_heads, hidden_size=hidden_size)
85
+
86
+ def optimize(self, enable_shape_inference=False):
87
+ if not enable_shape_inference:
88
+ self.disable_shape_inference()
89
+ self.fuse_layer_norm()
90
+ self.preprocess()
91
+ self.postprocess()
92
+
93
+ # We need a wrapper for UNet2DConditionModel as we need to pass tuples
94
+ # We can't properly export tuples of Tensors with ONNX
95
+
96
+ class UNet2DConditionModel_Cnet(UNet2DConditionModel):
97
+ def forward(
98
+ self,
99
+ sample: torch.FloatTensor,
100
+ timestep: Union[torch.Tensor, float, int],
101
+ encoder_hidden_states: torch.Tensor,
102
+ down_block_add_res00: Optional[torch.Tensor] = None,
103
+ down_block_add_res01: Optional[torch.Tensor] = None,
104
+ down_block_add_res02: Optional[torch.Tensor] = None,
105
+ down_block_add_res03: Optional[torch.Tensor] = None,
106
+ down_block_add_res04: Optional[torch.Tensor] = None,
107
+ down_block_add_res05: Optional[torch.Tensor] = None,
108
+ down_block_add_res06: Optional[torch.Tensor] = None,
109
+ down_block_add_res07: Optional[torch.Tensor] = None,
110
+ down_block_add_res08: Optional[torch.Tensor] = None,
111
+ down_block_add_res09: Optional[torch.Tensor] = None,
112
+ down_block_add_res10: Optional[torch.Tensor] = None,
113
+ down_block_add_res11: Optional[torch.Tensor] = None,
114
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
115
+ return_dict: bool = False,
116
+ ) -> Union[UNet2DConditionOutput, Tuple]:
117
+ down_block_add_res = (
118
+ down_block_add_res00, down_block_add_res01, down_block_add_res02,
119
+ down_block_add_res03, down_block_add_res04, down_block_add_res05,
120
+ down_block_add_res06, down_block_add_res07, down_block_add_res08,
121
+ down_block_add_res09, down_block_add_res10, down_block_add_res11)
122
+ return super().forward(
123
+ sample = sample,
124
+ timestep = timestep,
125
+ encoder_hidden_states = encoder_hidden_states,
126
+ down_block_additional_residuals = down_block_add_res,
127
+ mid_block_additional_residual = mid_block_additional_residual,
128
+ return_dict = return_dict
129
+ )
130
+
131
+ def onnx_export(
132
+ model,
133
+ model_args: tuple,
134
+ output_path: Path,
135
+ ordered_input_names,
136
+ output_names,
137
+ dynamic_axes,
138
+ opset,
139
+ ):
140
+ '''export a PyTorch model as an ONNX model'''
141
+ output_path.parent.mkdir(parents=True, exist_ok=True)
142
+ export(
143
+ model,
144
+ model_args,
145
+ f=output_path.as_posix(),
146
+ input_names=ordered_input_names,
147
+ output_names=output_names,
148
+ dynamic_axes=dynamic_axes,
149
+ do_constant_folding=True,
150
+ opset_version=opset,
151
+ )
152
+
153
+ @torch.no_grad()
154
+ def convert_to_fp16(
155
+ model_path
156
+ ):
157
+ '''Converts an ONNX model on disk to FP16'''
158
+ model_dir=os.path.dirname(model_path)
159
+ # Breaking down in steps due to Windows bug in convert_float_to_float16_model_path
160
+ onnx.shape_inference.infer_shapes_path(model_path)
161
+ fp16_model = onnx.load(model_path)
162
+ fp16_model = convert_float_to_float16(
163
+ fp16_model, keep_io_types=True, disable_shape_infer=True
164
+ )
165
+ # clean up existing tensor files
166
+ shutil.rmtree(model_dir)
167
+ os.mkdir(model_dir)
168
+ # save FP16 model
169
+ onnx.save(fp16_model, model_path)
170
+
171
+ @torch.no_grad()
172
+ def convert_models(pipeline: StableDiffusionPipeline,
173
+ output_path: str,
174
+ opset: int,
175
+ fp16: bool,
176
+ notune: bool,
177
+ controlnet_path: str,
178
+ attention_slicing: str):
179
+ '''Converts the individual models in a path (UNET, VAE ...) to ONNX'''
180
+
181
+ output_path = Path(output_path)
182
+
183
+ # TEXT ENCODER
184
+ num_tokens = pipeline.text_encoder.config.max_position_embeddings
185
+ text_hidden_size = pipeline.text_encoder.config.hidden_size
186
+ text_input = pipeline.tokenizer(
187
+ "A sample prompt",
188
+ padding="max_length",
189
+ max_length=pipeline.tokenizer.model_max_length,
190
+ truncation=True,
191
+ return_tensors="pt",
192
+ )
193
+ textenc_path=output_path / "text_encoder" / "model.onnx"
194
+ onnx_export(
195
+ pipeline.text_encoder,
196
+ # casting to torch.int32 https://github.com/huggingface/transformers/pull/18515/files
197
+ model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
198
+ output_path=textenc_path,
199
+ ordered_input_names=["input_ids"],
200
+ output_names=["last_hidden_state", "pooler_output"],
201
+ dynamic_axes={
202
+ "input_ids": {0: "batch", 1: "sequence"},
203
+ },
204
+ opset=opset,
205
+ )
206
+ if fp16:
207
+ textenc_model_path = str(textenc_path.absolute().as_posix())
208
+ convert_to_fp16(textenc_model_path)
209
+
210
+ # UNET
211
+ unet_in_channels = pipeline.unet.config.in_channels
212
+ unet_sample_size = pipeline.unet.config.sample_size
213
+ unet_path = output_path / "unet" / "model.onnx"
214
+ if controlnet_path:
215
+ # reload UNET to get an ONNX exportable version with ControlNet support
216
+ with tempfile.TemporaryDirectory() as tmpdirname:
217
+ pl.unet.save_pretrained(tmpdirname)
218
+ controlnet_unet=UNet2DConditionModel_Cnet.from_pretrained(tmpdirname,
219
+ low_cpu_mem_usage=False)
220
+
221
+ controlnet_unet.set_attn_processor(AttnProcessor())
222
+
223
+ if attention_slicing:
224
+ pl.enable_attention_slicing(attention_slicing)
225
+ controlnet_unet.set_attention_slice(attention_slicing)
226
+
227
+ onnx_export(
228
+ controlnet_unet,
229
+ model_args=(
230
+ torch.randn(2, unet_in_channels, unet_sample_size,
231
+ unet_sample_size).to(device=device, dtype=dtype),
232
+ torch.randn(2).to(device=device, dtype=dtype),
233
+ torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
234
+ torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
235
+ torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
236
+ torch.randn(2, 320, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
237
+ torch.randn(2, 320, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
238
+ torch.randn(2, 640, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
239
+ torch.randn(2, 640, unet_sample_size//2,unet_sample_size//2).to(device=device, dtype=dtype),
240
+ torch.randn(2, 640, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
241
+ torch.randn(2, 1280, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
242
+ torch.randn(2, 1280, unet_sample_size//4,unet_sample_size//4).to(device=device, dtype=dtype),
243
+ torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
244
+ torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
245
+ torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
246
+ torch.randn(2, 1280, unet_sample_size//8,unet_sample_size//8).to(device=device, dtype=dtype),
247
+ False,
248
+ ),
249
+ output_path=unet_path,
250
+ ordered_input_names=[
251
+ "sample",
252
+ "timestep",
253
+ "encoder_hidden_states",
254
+ "down_block_0",
255
+ "down_block_1",
256
+ "down_block_2",
257
+ "down_block_3",
258
+ "down_block_4",
259
+ "down_block_5",
260
+ "down_block_6",
261
+ "down_block_7",
262
+ "down_block_8",
263
+ "down_block_9",
264
+ "down_block_10",
265
+ "down_block_11",
266
+ "mid_block_additional_residual",
267
+ "return_dict"
268
+ ],
269
+ output_names=["out_sample"], # has to be different from "sample" for correct tracing
270
+ dynamic_axes={
271
+ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
272
+ "timestep": {0: "batch"},
273
+ "encoder_hidden_states": {0: "batch", 1: "sequence"},
274
+ "down_block_0": {0: "batch", 2: "height", 3: "width"},
275
+ "down_block_1": {0: "batch", 2: "height", 3: "width"},
276
+ "down_block_2": {0: "batch", 2: "height", 3: "width"},
277
+ "down_block_3": {0: "batch", 2: "height2", 3: "width2"},
278
+ "down_block_4": {0: "batch", 2: "height2", 3: "width2"},
279
+ "down_block_5": {0: "batch", 2: "height2", 3: "width2"},
280
+ "down_block_6": {0: "batch", 2: "height4", 3: "width4"},
281
+ "down_block_7": {0: "batch", 2: "height4", 3: "width4"},
282
+ "down_block_8": {0: "batch", 2: "height4", 3: "width4"},
283
+ "down_block_9": {0: "batch", 2: "height8", 3: "width8"},
284
+ "down_block_10": {0: "batch", 2: "height8", 3: "width8"},
285
+ "down_block_11": {0: "batch", 2: "height8", 3: "width8"},
286
+ "mid_block_additional_residual": {0: "batch", 2: "height8", 3: "width8"},
287
+ },
288
+ opset=opset,
289
+ )
290
+
291
+ controlnet = ControlNetModel.from_pretrained(args.controlnet_path, low_cpu_mem_usage=False)
292
+ if attention_slicing:
293
+ controlnet.set_attention_slice(attention_slicing)
294
+ cnet_path = output_path / "controlnet" / "model.onnx"
295
+ onnx_export(
296
+ controlnet,
297
+ model_args=(
298
+ torch.randn(2, 4, 64, 64).to(device=device, dtype=dtype),
299
+ torch.randn(2).to(device=device, dtype=torch.int32),
300
+ torch.randn(2, 77, 768).to(device=device, dtype=dtype),
301
+ torch.randn(2, 3, 512,512).to(device=device, dtype=dtype),
302
+ False,
303
+ ),
304
+ output_path=cnet_path,
305
+ ordered_input_names=["sample", "timestep", "encoder_hidden_states", "controlnet_cond","return_dict"],
306
+ output_names=["down_block_res_samples", "mid_block_res_sample"],
307
+ dynamic_axes={
308
+ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
309
+ "timestep": {0: "batch"},
310
+ "encoder_hidden_states": {0: "batch", 1: "sequence"},
311
+ "controlnet_cond": {0: "batch", 2: "height", 3: "width"}
312
+ },
313
+ opset=opset,
314
+ )
315
+
316
+ if fp16:
317
+ cnet_path_model_path = str(cnet_path.absolute().as_posix())
318
+ convert_to_fp16(cnet_path_model_path)
319
+
320
+ else:
321
+ onnx_export(
322
+ pipeline.unet,
323
+ model_args=(
324
+ torch.randn(2, unet_in_channels, unet_sample_size,
325
+ unet_sample_size).to(device=device, dtype=dtype),
326
+ torch.randn(2).to(device=device, dtype=torch.int32),
327
+ torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
328
+ False,
329
+ ),
330
+ output_path=unet_path,
331
+ ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
332
+ output_names=["out_sample"], # has to be different from "sample" for correct tracing
333
+ dynamic_axes={
334
+ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
335
+ "timestep": {0: "batch"},
336
+ "encoder_hidden_states": {0: "batch", 1: "sequence"},
337
+ },
338
+ opset=opset,
339
+ )
340
+ del pipeline.unet
341
+
342
+ unet_model_path = str(unet_path.absolute().as_posix())
343
+ unet_dir = os.path.dirname(unet_model_path)
344
+ unet = onnx.load(unet_model_path)
345
+ # clean up existing tensor files
346
+ shutil.rmtree(unet_dir)
347
+ os.mkdir(unet_dir)
348
+
349
+ optimizer = UnetOnnxModelDML(unet, 0, 0)
350
+ if not notune:
351
+ optimizer.optimize()
352
+ optimizer.topological_sort()
353
+
354
+ # collate external tensor files into one
355
+ onnx.save_model(
356
+ optimizer.model,
357
+ unet_model_path,
358
+ save_as_external_data=True,
359
+ all_tensors_to_one_file=True,
360
+ location="weights.pb",
361
+ convert_attribute=False,
362
+ )
363
+ if fp16:
364
+ convert_to_fp16(unet_model_path)
365
+ del unet, optimizer
366
+
367
+ # VAE ENCODER
368
+ vae_encoder = pipeline.vae
369
+ vae_in_channels = vae_encoder.config.in_channels
370
+ vae_sample_size = vae_encoder.config.sample_size
371
+ # need to get the raw tensor output (sample) from the encoder
372
+ vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample,
373
+ return_dict)[0].sample()
374
+ onnx_export(
375
+ vae_encoder,
376
+ model_args=(
377
+ torch.randn(1, vae_in_channels, vae_sample_size,
378
+ vae_sample_size).to(device=device, dtype=dtype),
379
+ False,
380
+ ),
381
+ output_path=output_path / "vae_encoder" / "model.onnx",
382
+ ordered_input_names=["sample", "return_dict"],
383
+ output_names=["latent_sample"],
384
+ dynamic_axes={
385
+ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
386
+ },
387
+ opset=opset,
388
+ )
389
+
390
+ # VAE DECODER
391
+ vae_decoder = pipeline.vae
392
+ vae_latent_channels = vae_decoder.config.latent_channels
393
+ vae_out_channels = vae_decoder.config.out_channels
394
+ # forward only through the decoder part
395
+ vae_decoder.forward = vae_encoder.decode
396
+ onnx_export(
397
+ vae_decoder,
398
+ model_args=(
399
+ torch.randn(1, vae_latent_channels, unet_sample_size,
400
+ unet_sample_size).to(device=device, dtype=dtype),
401
+ False,
402
+ ),
403
+ output_path=output_path / "vae_decoder" / "model.onnx",
404
+ ordered_input_names=["latent_sample", "return_dict"],
405
+ output_names=["sample"],
406
+ dynamic_axes={
407
+ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
408
+ },
409
+ opset=opset,
410
+ )
411
+ del pipeline.vae
412
+
413
+ # SAFETY CHECKER
414
+ # NOTE:
415
+ # Safety checker is excluded because it is a resource hog and you'd be turning it off anyway
416
+ # I'm not a legal expert but IMHO you are still bound by the model's license after conversion
417
+ # Check the license of the model you are converting and abide by it
418
+
419
+ safety_checker = None
420
+ feature_extractor = None
421
+
422
+ onnx_pipeline = OnnxStableDiffusionPipeline(
423
+ vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder",
424
+ low_cpu_mem_usage=False),
425
+ vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder",
426
+ low_cpu_mem_usage=False),
427
+ text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder",
428
+ low_cpu_mem_usage=False),
429
+ tokenizer=pipeline.tokenizer,
430
+ unet=OnnxRuntimeModel.from_pretrained(output_path / "unet",low_cpu_mem_usage=False),
431
+ scheduler=pipeline.scheduler,
432
+ safety_checker=safety_checker,
433
+ feature_extractor=feature_extractor,
434
+ requires_safety_checker=safety_checker is not None,
435
+ )
436
+
437
+ onnx_pipeline.save_pretrained(output_path)
438
+
439
+ if controlnet_path:
440
+ confname=f"{output_path}/model_index.json"
441
+ with open(confname, 'r', encoding="utf-8") as f:
442
+ modelconf = json.load(f)
443
+ modelconf['controlnet'] = ("diffusers","OnnxRuntimeModel")
444
+ with open(confname, 'w', encoding="utf-8") as f:
445
+ json.dump(modelconf, f, indent=1)
446
+
447
+ print("ONNX pipeline saved to", output_path)
448
+
449
+ del pipeline
450
+ del onnx_pipeline
451
+ _ = OnnxStableDiffusionPipeline.from_pretrained(output_path,
452
+ provider="DmlExecutionProvider",
453
+ low_cpu_mem_usage=False)
454
+ print("ONNX pipeline is loadable")
455
+
456
+
457
+ if __name__ == "__main__":
458
+ parser = argparse.ArgumentParser()
459
+
460
+ parser.add_argument(
461
+ "--model_path",
462
+ default="D:/cache/chilloutmix_NiPrunedFp32Fix.safetensors",
463
+ type=str,
464
+ required=False,
465
+ help=(
466
+ "Path to the `diffusers` checkpoint to convert (either local directory or on the Hub). "
467
+ "Or the path to a local checkpoint saved in .ckpt or .safetensors."
468
+ )
469
+ )
470
+
471
+ parser.add_argument(
472
+ "--output_path",
473
+ default="D:/source-fp32",
474
+ type=str,
475
+ required=False,
476
+ help="Path to the output model."
477
+ )
478
+
479
+ parser.add_argument(
480
+ "--vae_path",
481
+ default=None,
482
+ type=str,
483
+ help=(
484
+ "Path to alternate VAE `diffusers` checkpoint (either local or on the Hub). "
485
+ )
486
+ )
487
+
488
+ parser.add_argument(
489
+ "--controlnet_path",
490
+ default=None,
491
+ type=str,
492
+ help=(
493
+ "Path to controlnet model to import and convert (either local or on the Hub). "
494
+ "Setting this results in an SD model intended to be used with a specific ControlNet"
495
+ )
496
+ )
497
+
498
+ parser.add_argument(
499
+ "--opset",
500
+ default=15,
501
+ type=int,
502
+ help="The version of the ONNX operator set to use.",
503
+ )
504
+
505
+ parser.add_argument(
506
+ "--fp16",
507
+ action="store_true",
508
+ help="Export Text Encoder and UNET in mixed `float16` mode"
509
+ )
510
+
511
+ parser.add_argument(
512
+ "--notune",
513
+ action="store_true",
514
+ help="Turn off tuning UNET with ONNX Runtime Transformers"
515
+ )
516
+
517
+ parser.add_argument(
518
+ "--attention-slicing",
519
+ choices={"auto","max"},
520
+ type=str,
521
+ help=(
522
+ "Attention slicing reduces VRAM needed, off by default. Set to auto or max. "
523
+ "WARNING: max implies --notune"
524
+ )
525
+ )
526
+
527
+ parser.add_argument(
528
+ "--clip-skip",
529
+ choices={2,3,4},
530
+ type=int,
531
+ help="Add permanent clip skip to ONNX model."
532
+ )
533
+
534
+ parser.add_argument(
535
+ "--diffusers-output",
536
+ type=str,
537
+ help="Directory to dump a pre-conversion copy in diffusers format in."
538
+ )
539
+
540
+ parser.add_argument(
541
+ "--ckpt-original-config-file",
542
+ default="D:/python/diffusion-convert-FP/v1-inference.yaml",
543
+ type=str,
544
+ help="The YAML config file corresponding to the original architecture."
545
+ )
546
+
547
+ parser.add_argument(
548
+ "--ckpt-image-size",
549
+ default=None,
550
+ type=int,
551
+ help="The image size that the model was trained on. Typically 512 or 768"
552
+ )
553
+
554
+ parser.add_argument(
555
+ "--ckpt-prediction_type",
556
+ default=None,
557
+ type=str,
558
+ help=(
559
+ "Prediction type the model was trained on. "
560
+ "'epsilon' for SD v1.X and SD v2 Base, 'v-prediction' for SD v2"
561
+ )
562
+ )
563
+
564
+ parser.add_argument(
565
+ "--ckpt-pipeline_type",
566
+ default=None,
567
+ type=str,
568
+ help="The pipeline type. If `None` pipeline will be automatically inferred."
569
+ )
570
+
571
+ parser.add_argument(
572
+ "--ckpt-extract-ema",
573
+ action="store_true",
574
+ help=(
575
+ "Only relevant for checkpoints that have both EMA and non-EMA weights. "
576
+ "If set enables extraction of EMA weights (Default is non-EMA). "
577
+ "EMA weights usually yield higher quality images for inference. "
578
+ "Non-EMA weights are usually better to continue fine-tuning."
579
+ )
580
+ )
581
+
582
+ parser.add_argument(
583
+ "--ckpt-num-in-channels",
584
+ default=None,
585
+ type=int,
586
+ help=(
587
+ "The number of input channels. "
588
+ "If `None` number of input channels will be automatically inferred."
589
+ )
590
+ )
591
+
592
+ parser.add_argument(
593
+ "--ckpt-upcast-attention",
594
+ action="store_true",
595
+ help=(
596
+ "Whether the attention computation should always be upcasted. "
597
+ "Necessary when running SD 2.1"
598
+ )
599
+ )
600
+
601
+ args = parser.parse_args()
602
+
603
+ dtype=torch.float32
604
+ device = "cpu"
605
+ if args.model_path.endswith(".ckpt") or args.model_path.endswith(".safetensors"):
606
+ pl = download_from_original_stable_diffusion_ckpt(
607
+ checkpoint_path=args.model_path,
608
+ original_config_file=args.ckpt_original_config_file,
609
+ image_size=args.ckpt_image_size,
610
+ prediction_type=args.ckpt_prediction_type,
611
+ model_type=args.ckpt_pipeline_type,
612
+ extract_ema=args.ckpt_extract_ema,
613
+ scheduler_type="pndm",
614
+ num_in_channels=args.ckpt_num_in_channels,
615
+ upcast_attention=args.ckpt_upcast_attention,
616
+ from_safetensors=args.model_path.endswith(".safetensors")
617
+ )
618
+ else:
619
+ pl = StableDiffusionPipeline.from_pretrained(args.model_path,
620
+ torch_dtype=dtype,low_cpu_mem_usage=False).to(device)
621
+
622
+ if args.vae_path:
623
+ with tempfile.TemporaryDirectory() as tmpdirname:
624
+ pl.save_pretrained(tmpdirname)
625
+ if args.vae_path.endswith('/vae'):
626
+ vae = AutoencoderKL.from_pretrained(args.vae_path[:-4],subfolder='vae',
627
+ low_cpu_mem_usage=False)
628
+ else:
629
+ vae = AutoencoderKL.from_pretrained(args.vae_path,low_cpu_mem_usage=False)
630
+ pl = StableDiffusionPipeline.from_pretrained(tmpdirname,
631
+ torch_dtype=dtype, vae=vae,low_cpu_mem_usage=False).to(device)
632
+
633
+ if args.clip_skip:
634
+ with tempfile.TemporaryDirectory() as tmpdirname:
635
+ pl.save_pretrained(tmpdirname)
636
+ confname=f"{tmpdirname}/text_encoder/config.json"
637
+ with open(confname, 'r', encoding="utf-8") as f:
638
+ clipconf = json.load(f)
639
+ clipconf['num_hidden_layers'] = clipconf['num_hidden_layers']-args.clip_skip+1
640
+ with open(confname, 'w', encoding="utf-8") as f:
641
+ json.dump(clipconf, f, indent=1)
642
+ pl = StableDiffusionPipeline.from_pretrained(tmpdirname,
643
+ torch_dtype=dtype,low_cpu_mem_usage=False).to(device)
644
+
645
+ pl.unet.set_attn_processor(AttnProcessor())
646
+
647
+ blocktune=False
648
+ if args.attention_slicing:
649
+ if args.attention_slicing == "max":
650
+ blocktune=True
651
+ print ("WARNING: attention_slicing max implies --notune")
652
+ pl.enable_attention_slicing(args.attention_slicing)
653
+
654
+ if args.diffusers_output:
655
+ pl.save_pretrained(args.diffusers_output)
656
+
657
+ #convert_models(pl, args.output_path,args.opset,args.fp16,args.notune or blocktune,args.controlnet_path,args.attention_slicing)
658
+ convert_models(pl, args.output_path, args.opset, False, args.notune or blocktune, args.controlnet_path,args.attention_slicing)
patchedstabledifftoonnx/dance_pose.png ADDED
patchedstabledifftoonnx/input_image_vermeer.png ADDED
patchedstabledifftoonnx/pipeline_onnx_stable_diffusion_controlnet.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team.
2
+ # Converted for use with ONNX as part of https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16
3
+ # Special thanks to https://github.com/uchuusen for the initial conversion effort
4
+
5
+ import inspect
6
+ from typing import Callable, List, Optional, Union
7
+
8
+ import numpy as np
9
+ import torch
10
+ import PIL
11
+ from transformers import CLIPFeatureExtractor, CLIPTokenizer
12
+
13
+ from diffusers.configuration_utils import FrozenDict
14
+ from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
15
+ from diffusers.utils import deprecate, logging, PIL_INTERPOLATION
16
+ from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel
17
+ from diffusers.pipeline_utils import DiffusionPipeline
18
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class OnnxStableDiffusionControlNetPipeline(DiffusionPipeline):
25
+ vae_encoder: OnnxRuntimeModel
26
+ vae_decoder: OnnxRuntimeModel
27
+ text_encoder: OnnxRuntimeModel
28
+ tokenizer: CLIPTokenizer
29
+ unet: OnnxRuntimeModel
30
+ controlnet: OnnxRuntimeModel
31
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
32
+ safety_checker: OnnxRuntimeModel
33
+ feature_extractor: CLIPFeatureExtractor
34
+
35
+ _optional_components = ["safety_checker", "feature_extractor"]
36
+
37
+ def __init__(
38
+ self,
39
+ vae_encoder: OnnxRuntimeModel,
40
+ vae_decoder: OnnxRuntimeModel,
41
+ text_encoder: OnnxRuntimeModel,
42
+ tokenizer: CLIPTokenizer,
43
+ unet: OnnxRuntimeModel,
44
+ controlnet: OnnxRuntimeModel,
45
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
46
+ safety_checker: OnnxRuntimeModel,
47
+ feature_extractor: CLIPFeatureExtractor,
48
+ requires_safety_checker: bool = True,
49
+ ):
50
+ super().__init__()
51
+
52
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
53
+ deprecation_message = (
54
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
55
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
56
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
57
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
58
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
59
+ " file"
60
+ )
61
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
62
+ new_config = dict(scheduler.config)
63
+ new_config["steps_offset"] = 1
64
+ scheduler._internal_dict = FrozenDict(new_config)
65
+
66
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
67
+ deprecation_message = (
68
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
69
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
70
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
71
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
72
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
73
+ )
74
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
75
+ new_config = dict(scheduler.config)
76
+ new_config["clip_sample"] = False
77
+ scheduler._internal_dict = FrozenDict(new_config)
78
+
79
+ if safety_checker is None and requires_safety_checker:
80
+ logger.warning(
81
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
82
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
83
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
84
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
85
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
86
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
87
+ )
88
+
89
+ if safety_checker is not None and feature_extractor is None:
90
+ raise ValueError(
91
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
92
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
93
+ )
94
+
95
+ self.register_modules(
96
+ vae_encoder=vae_encoder,
97
+ vae_decoder=vae_decoder,
98
+ text_encoder=text_encoder,
99
+ tokenizer=tokenizer,
100
+ unet=unet,
101
+ controlnet=controlnet,
102
+ scheduler=scheduler,
103
+ safety_checker=safety_checker,
104
+ feature_extractor=feature_extractor,
105
+ )
106
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
107
+
108
+
109
+ def _default_height_width(self, height, width, image):
110
+ if isinstance(image, list):
111
+ image = image[0]
112
+
113
+ if height is None:
114
+ if isinstance(image, PIL.Image.Image):
115
+ height = image.height
116
+ elif isinstance(image, np.ndarray):
117
+ height = image.shape[3]
118
+
119
+ height = (height // 8) * 8 # round down to nearest multiple of 8
120
+
121
+ if width is None:
122
+ if isinstance(image, PIL.Image.Image):
123
+ width = image.width
124
+ elif isinstance(image, np.ndarray):
125
+ width = image.shape[2]
126
+
127
+ width = (width // 8) * 8 # round down to nearest multiple of 8
128
+
129
+ return height, width
130
+
131
+ def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, dtype):
132
+ if not isinstance(image, np.ndarray):
133
+ if isinstance(image, PIL.Image.Image):
134
+ image = [image]
135
+
136
+ if isinstance(image[0], PIL.Image.Image):
137
+ image = [
138
+ np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image
139
+ ]
140
+ image = np.concatenate(image, axis=0)
141
+ image = np.array(image).astype(np.float32) / 255.0
142
+ image = image.transpose(0, 3, 1, 2)
143
+ image = torch.from_numpy(image)
144
+ elif isinstance(image[0], np.ndarray):
145
+ image = np.concatenate(image, axis=0)
146
+ image = torch.from_numpy(image)
147
+
148
+ image_batch_size = image.shape[0]
149
+
150
+ if image_batch_size == 1:
151
+ repeat_by = batch_size
152
+ else:
153
+ # image batch size is the same as prompt batch size
154
+ repeat_by = num_images_per_prompt
155
+
156
+ image = image.repeat_interleave(repeat_by, dim=0)
157
+
158
+ return image
159
+
160
+
161
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
162
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
163
+ shape = (batch_size, num_channels_latents, height // 8, width // 8)
164
+ if isinstance(generator, list) and len(generator) != batch_size:
165
+ raise ValueError(
166
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
167
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
168
+ )
169
+
170
+ if latents is None:
171
+ latents = generator.randn(*shape).astype(dtype)
172
+
173
+
174
+ # scale the initial noise by the standard deviation required by the scheduler
175
+ latents = latents * self.scheduler.init_noise_sigma
176
+ return latents
177
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
178
+ def prepare_extra_step_kwargs(self, generator, eta, torch_gen):
179
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
180
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
181
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
182
+ # and should be between [0, 1]
183
+
184
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
185
+ extra_step_kwargs = {}
186
+ if accepts_eta:
187
+ extra_step_kwargs["eta"] = eta
188
+
189
+ # check if the scheduler accepts generator
190
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
191
+ if accepts_generator:
192
+ extra_step_kwargs["generator"] = torch_gen
193
+ return extra_step_kwargs
194
+
195
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
196
+ r"""
197
+ Encodes the prompt into text encoder hidden states.
198
+
199
+ Args:
200
+ prompt (`str` or `List[str]`):
201
+ prompt to be encoded
202
+ num_images_per_prompt (`int`):
203
+ number of images that should be generated per prompt
204
+ do_classifier_free_guidance (`bool`):
205
+ whether to use classifier free guidance or not
206
+ negative_prompt (`str` or `List[str]`):
207
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
208
+ if `guidance_scale` is less than `1`).
209
+ """
210
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
211
+
212
+ # get prompt text embeddings
213
+ text_inputs = self.tokenizer(
214
+ prompt,
215
+ padding="max_length",
216
+ max_length=self.tokenizer.model_max_length,
217
+ truncation=True,
218
+ return_tensors="np",
219
+ )
220
+ text_input_ids = text_inputs.input_ids
221
+ untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
222
+
223
+ if not np.array_equal(text_input_ids, untruncated_ids):
224
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
225
+ logger.warning(
226
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
227
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
228
+ )
229
+
230
+ prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
231
+ prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
232
+
233
+ # get unconditional embeddings for classifier free guidance
234
+ if do_classifier_free_guidance:
235
+ uncond_tokens: List[str]
236
+ if negative_prompt is None:
237
+ uncond_tokens = [""] * batch_size
238
+ elif type(prompt) is not type(negative_prompt):
239
+ raise TypeError(
240
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
241
+ f" {type(prompt)}."
242
+ )
243
+ elif isinstance(negative_prompt, str):
244
+ uncond_tokens = [negative_prompt] * batch_size
245
+ elif batch_size != len(negative_prompt):
246
+ raise ValueError(
247
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
248
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
249
+ " the batch size of `prompt`."
250
+ )
251
+ else:
252
+ uncond_tokens = negative_prompt
253
+
254
+ max_length = text_input_ids.shape[-1]
255
+ uncond_input = self.tokenizer(
256
+ uncond_tokens,
257
+ padding="max_length",
258
+ max_length=max_length,
259
+ truncation=True,
260
+ return_tensors="np",
261
+ )
262
+ negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
263
+ negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
264
+
265
+ # For classifier free guidance, we need to do two forward passes.
266
+ # Here we concatenate the unconditional and text embeddings into a single batch
267
+ # to avoid doing two forward passes
268
+ prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
269
+
270
+ return prompt_embeds
271
+
272
+ def __call__(
273
+ self,
274
+ prompt: Union[str, List[str]],
275
+ image: Union[np.ndarray, PIL.Image.Image] = None,
276
+ height: Optional[int] = None,
277
+ width: Optional[int] = None,
278
+ num_inference_steps: Optional[int] = 50,
279
+ guidance_scale: Optional[float] = 7.5,
280
+ negative_prompt: Optional[Union[str, List[str]]] = None,
281
+ num_images_per_prompt: Optional[int] = 1,
282
+ eta: Optional[float] = 0.0,
283
+ generator: Optional[np.random.RandomState] = None,
284
+ latents: Optional[np.ndarray] = None,
285
+ output_type: Optional[str] = "pil",
286
+ return_dict: bool = True,
287
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
288
+ callback_steps: int = 1,
289
+ controlnet_conditioning_scale: float = 1.0,
290
+ ):
291
+ if isinstance(prompt, str):
292
+ batch_size = 1
293
+ elif isinstance(prompt, list):
294
+ batch_size = len(prompt)
295
+ else:
296
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
297
+
298
+
299
+ if generator:
300
+ torch_seed = generator.randint(2147483647)
301
+ torch_gen = torch.Generator().manual_seed(torch_seed)
302
+ else:
303
+ generator = np.random
304
+ torch_gen = None
305
+
306
+ height, width = self._default_height_width(height, width, image)
307
+
308
+ if height % 8 != 0 or width % 8 != 0:
309
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
310
+
311
+ if (callback_steps is None) or (
312
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
313
+ ):
314
+ raise ValueError(
315
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
316
+ f" {type(callback_steps)}."
317
+ )
318
+
319
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
320
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
321
+ # corresponds to doing no classifier free guidance.
322
+ do_classifier_free_guidance = guidance_scale > 1.0
323
+
324
+ prompt_embeds = self._encode_prompt(
325
+ prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
326
+ )
327
+
328
+ # 4. Prepare image
329
+ image = self.prepare_image(
330
+ image,
331
+ width,
332
+ height,
333
+ batch_size * num_images_per_prompt,
334
+ num_images_per_prompt,
335
+ np.float32,
336
+ ).numpy()
337
+
338
+ if do_classifier_free_guidance:
339
+ image = np.concatenate([image] * 2)
340
+
341
+ # get the initial random noise unless the user supplied it
342
+ latents_dtype = prompt_embeds.dtype
343
+ latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
344
+
345
+ num_channels_latents = 4
346
+ latents = self.prepare_latents(
347
+ batch_size * num_images_per_prompt,
348
+ num_channels_latents,
349
+ height,
350
+ width,
351
+ latents_dtype,
352
+ generator,
353
+ latents,
354
+ )
355
+
356
+ # set timesteps
357
+ self.scheduler.set_timesteps(num_inference_steps)
358
+ timesteps = self.scheduler.timesteps
359
+
360
+
361
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
362
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
363
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
364
+ # and should be between [0, 1]
365
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta, torch_gen)
366
+
367
+ timestep_dtype = next(
368
+ (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
369
+ )
370
+ timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
371
+
372
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
373
+
374
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
375
+ for i, t in enumerate(timesteps):
376
+ # expand the latents if we are doing classifier free guidance
377
+ latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
378
+ latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
379
+ latent_model_input = latent_model_input.cpu().numpy()
380
+
381
+ timestep = np.array([t], dtype=timestep_dtype)
382
+
383
+ blocksamples = self.controlnet(
384
+ sample=latent_model_input,
385
+ timestep=timestep,
386
+ encoder_hidden_states=prompt_embeds,
387
+ controlnet_cond=image,
388
+ conditioning_scale=1.0
389
+ )
390
+
391
+ mid_block_res_sample=blocksamples[12]
392
+ down_block_res_samples=blocksamples[0:12]
393
+
394
+ down_block_res_samples = [
395
+ down_block_res_sample * controlnet_conditioning_scale
396
+ for down_block_res_sample in down_block_res_samples
397
+ ]
398
+ mid_block_res_sample *= controlnet_conditioning_scale
399
+
400
+ # predict the noise residual
401
+
402
+ noise_pred = self.unet(
403
+ sample=latent_model_input,
404
+ timestep=timestep,
405
+ encoder_hidden_states=prompt_embeds,
406
+ down_block_0=down_block_res_samples[0],
407
+ down_block_1=down_block_res_samples[1],
408
+ down_block_2=down_block_res_samples[2],
409
+ down_block_3=down_block_res_samples[3],
410
+ down_block_4=down_block_res_samples[4],
411
+ down_block_5=down_block_res_samples[5],
412
+ down_block_6=down_block_res_samples[6],
413
+ down_block_7=down_block_res_samples[7],
414
+ down_block_8=down_block_res_samples[8],
415
+ down_block_9=down_block_res_samples[9],
416
+ down_block_10=down_block_res_samples[10],
417
+ down_block_11=down_block_res_samples[11],
418
+ mid_block_additional_residual=mid_block_res_sample
419
+ )
420
+ noise_pred = noise_pred[0]
421
+
422
+ # perform guidance
423
+ if do_classifier_free_guidance:
424
+ noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
425
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
426
+
427
+ # compute the previous noisy sample x_t -> x_t-1
428
+ scheduler_output = self.scheduler.step(
429
+ torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
430
+ )
431
+ latents = scheduler_output.prev_sample.numpy()
432
+
433
+ # call the callback, if provided
434
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
435
+ progress_bar.update()
436
+ if callback is not None and i % callback_steps == 0:
437
+ callback(i, t, latents)
438
+
439
+ latents = 1 / 0.18215 * latents
440
+ # image = self.vae_decoder(latent_sample=latents)[0]
441
+ # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
442
+ image = np.concatenate(
443
+ [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
444
+ )
445
+
446
+ image = np.clip(image / 2 + 0.5, 0, 1)
447
+ image = image.transpose((0, 2, 3, 1))
448
+
449
+ if self.safety_checker is not None:
450
+ safety_checker_input = self.feature_extractor(
451
+ self.numpy_to_pil(image), return_tensors="np"
452
+ ).pixel_values.astype(image.dtype)
453
+
454
+ images, has_nsfw_concept = [], []
455
+ for i in range(image.shape[0]):
456
+ image_i, has_nsfw_concept_i = self.safety_checker(
457
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
458
+ )
459
+ images.append(image_i)
460
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
461
+ image = np.concatenate(images)
462
+ else:
463
+ has_nsfw_concept = None
464
+
465
+ if output_type == "pil":
466
+ image = self.numpy_to_pil(image)
467
+
468
+ if not return_dict:
469
+ return (image, has_nsfw_concept)
470
+
471
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
472
+
patchedstabledifftoonnx/pipeline_onnx_stable_diffusion_instruct_pix2pix.py ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The InstructPix2Pix Authors and The HuggingFace Team.
2
+ # Converted for use with ONNX as part of https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16
3
+
4
+ import inspect
5
+ from typing import Callable, List, Optional, Union
6
+
7
+ import numpy as np
8
+ import PIL
9
+ import torch
10
+ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
11
+
12
+ try:
13
+ from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
14
+ except ImportError:
15
+ ORT_TO_NP_TYPE = {
16
+ "tensor(bool)": np.bool_,
17
+ "tensor(int8)": np.int8,
18
+ "tensor(uint8)": np.uint8,
19
+ "tensor(int16)": np.int16,
20
+ "tensor(uint16)": np.uint16,
21
+ "tensor(int32)": np.int32,
22
+ "tensor(uint32)": np.uint32,
23
+ "tensor(int64)": np.int64,
24
+ "tensor(uint64)": np.uint64,
25
+ "tensor(float16)": np.float16,
26
+ "tensor(float)": np.float32,
27
+ "tensor(double)": np.float64,
28
+ }
29
+
30
+ from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin
31
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
32
+ from diffusers.schedulers import KarrasDiffusionSchedulers, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
33
+ from diffusers.utils import (
34
+ PIL_INTERPOLATION,
35
+ deprecate,
36
+ logging,
37
+ randn_tensor,
38
+ )
39
+ from diffusers.pipeline_utils import DiffusionPipeline
40
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+
46
+ # Simplified and ONNX specific version (only allows 1 image, np over torch)
47
+ def preprocess(image):
48
+ if isinstance(image, np.ndarray):
49
+ return image
50
+
51
+ w, h = image.size
52
+ w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
53
+ image = np.array(image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
54
+ image = np.array(image).astype(np.float32) / 255.0
55
+ image = image.transpose(0, 3, 1, 2)
56
+ image = 2.0 * image - 1.0
57
+ return image
58
+
59
+
60
+ class OnnxStableDiffusionInstructPix2PixPipeline(DiffusionPipeline):
61
+ r"""
62
+ Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion.
63
+
64
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
65
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
66
+
67
+ Args:
68
+ vae ([`AutoencoderKL`]):
69
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
70
+ text_encoder ([`CLIPTextModel`]):
71
+ Frozen text-encoder. Stable Diffusion uses the text portion of
72
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
73
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
74
+ tokenizer (`CLIPTokenizer`):
75
+ Tokenizer of class
76
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
77
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
78
+ scheduler ([`SchedulerMixin`]):
79
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
80
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
81
+ safety_checker ([`StableDiffusionSafetyChecker`]):
82
+ Classification module that estimates whether generated images could be considered offensive or harmful.
83
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
84
+ feature_extractor ([`CLIPFeatureExtractor`]):
85
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
86
+ """
87
+ vae_encoder: OnnxRuntimeModel
88
+ vae_decoder: OnnxRuntimeModel
89
+ text_encoder: OnnxRuntimeModel
90
+ tokenizer: CLIPTokenizer
91
+ unet: OnnxRuntimeModel
92
+ scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
93
+ safety_checker: OnnxRuntimeModel
94
+ feature_extractor: CLIPFeatureExtractor
95
+ _optional_components = ["safety_checker", "feature_extractor"]
96
+
97
+ def __init__(
98
+ self,
99
+ vae_encoder: OnnxRuntimeModel,
100
+ vae_decoder: OnnxRuntimeModel,
101
+ text_encoder: OnnxRuntimeModel,
102
+ tokenizer: CLIPTokenizer,
103
+ unet: OnnxRuntimeModel,
104
+ scheduler: KarrasDiffusionSchedulers,
105
+ safety_checker: OnnxRuntimeModel,
106
+ feature_extractor: CLIPFeatureExtractor,
107
+ requires_safety_checker: bool = True,
108
+ ):
109
+ super().__init__()
110
+ self.unet_in_channels = 8
111
+ self.vae_scale_factor = 8
112
+
113
+ if safety_checker is None and requires_safety_checker:
114
+ logger.warning(
115
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
116
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
117
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
118
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
119
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
120
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
121
+ )
122
+
123
+ if safety_checker is not None and feature_extractor is None:
124
+ raise ValueError(
125
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
126
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
127
+ )
128
+
129
+ self.register_modules(
130
+ vae_encoder=vae_encoder,
131
+ vae_decoder=vae_decoder,
132
+ text_encoder=text_encoder,
133
+ tokenizer=tokenizer,
134
+ unet=unet,
135
+ scheduler=scheduler,
136
+ safety_checker=safety_checker,
137
+ feature_extractor=feature_extractor,
138
+ )
139
+ #self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
140
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
141
+
142
+ @torch.no_grad()
143
+ def __call__(
144
+ self,
145
+ prompt: Union[str, List[str]] = None,
146
+ image: Union[np.ndarray, PIL.Image.Image] = None,
147
+ num_inference_steps: int = 100,
148
+ guidance_scale: float = 7.5,
149
+ image_guidance_scale: float = 1.5,
150
+ negative_prompt: Optional[Union[str, List[str]]] = None,
151
+ num_images_per_prompt: Optional[int] = 1,
152
+ eta: float = 0.0,
153
+ generator: Optional[np.random.RandomState] = None,
154
+ latents: Optional[np.ndarray] = None,
155
+ output_type: Optional[str] = "pil",
156
+ return_dict: bool = True,
157
+ callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
158
+ callback_steps: int = 1,
159
+ ):
160
+ r"""
161
+ Function invoked when calling the pipeline for generation.
162
+
163
+ Args:
164
+ prompt (`str` or `List[str]`, *optional*):
165
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
166
+ instead.
167
+ image (`PIL.Image.Image`):
168
+ `Image`, or tensor representing an image batch which will be repainted according to `prompt`.
169
+ num_inference_steps (`int`, *optional*, defaults to 100):
170
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
171
+ expense of slower inference.
172
+ guidance_scale (`float`, *optional*, defaults to 7.5):
173
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
174
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
175
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
176
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
177
+ usually at the expense of lower image quality. This pipeline requires a value of at least `1`.
178
+ image_guidance_scale (`float`, *optional*, defaults to 1.5):
179
+ Image guidance scale is to push the generated image towards the inital image `image`. Image guidance
180
+ scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
181
+ generate images that are closely linked to the source image `image`, usually at the expense of lower
182
+ image quality. This pipeline requires a value of at least `1`.
183
+ negative_prompt (`str` or `List[str]`, *optional*):
184
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
185
+ `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
186
+ is less than `1`).
187
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
188
+ The number of images to generate per prompt.
189
+ eta (`float`, *optional*, defaults to 0.0):
190
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
191
+ [`schedulers.DDIMScheduler`], will be ignored for others.
192
+ generator (`torch.Generator`, *optional*):
193
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
194
+ to make generation deterministic.
195
+ latents (`torch.FloatTensor`, *optional*):
196
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
197
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
198
+ tensor will ge generated by sampling using the supplied random `generator`.
199
+ prompt_embeds (`torch.FloatTensor`, *optional*):
200
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
201
+ provided, text embeddings will be generated from `prompt` input argument.
202
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
203
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
204
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
205
+ argument.
206
+ output_type (`str`, *optional*, defaults to `"pil"`):
207
+ The output format of the generate image. Choose between
208
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
209
+ return_dict (`bool`, *optional*, defaults to `True`):
210
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
211
+ plain tuple.
212
+ callback (`Callable`, *optional*):
213
+ A function that will be called every `callback_steps` steps during inference. The function will be
214
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
215
+ callback_steps (`int`, *optional*, defaults to 1):
216
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
217
+ called at every step.
218
+
219
+ Examples:
220
+
221
+ ```py
222
+ >>> import PIL
223
+ >>> import requests
224
+ >>> import torch
225
+ >>> from io import BytesIO
226
+
227
+ >>> from diffusers import StableDiffusionInstructPix2PixPipeline
228
+
229
+
230
+ >>> def download_image(url):
231
+ ... response = requests.get(url)
232
+ ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
233
+
234
+
235
+ >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
236
+
237
+ >>> image = download_image(img_url).resize((512, 512))
238
+
239
+ >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
240
+ ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16
241
+ ... )
242
+ >>> pipe = pipe.to("cuda")
243
+
244
+ >>> prompt = "make the mountains snowy"
245
+ >>> image = pipe(prompt=prompt, image=image).images[0]
246
+ ```
247
+
248
+ Returns:
249
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
250
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
251
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
252
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
253
+ (nsfw) content, according to the `safety_checker`.
254
+ """
255
+
256
+ # We need a deterministic torch generator for schedulers if a (likely seeded) generator was provided
257
+
258
+ if generator:
259
+ torch_seed = generator.randint(2147483647)
260
+ torch_gen = torch.Generator().manual_seed(torch_seed)
261
+ else:
262
+ generator = np.random
263
+ torch_gen = None
264
+
265
+ # 0. Check inputs
266
+ self.check_inputs(prompt, callback_steps)
267
+
268
+ if image is None:
269
+ raise ValueError("`image` input cannot be undefined.")
270
+
271
+ # 1. Define call parameters
272
+ if isinstance(prompt, str):
273
+ batch_size = 1
274
+ elif isinstance(prompt, list):
275
+ batch_size = len(prompt)
276
+ else:
277
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
278
+
279
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
280
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
281
+ # corresponds to doing no classifier free guidance.
282
+ do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
283
+ # check if scheduler is in sigmas space
284
+ scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
285
+
286
+ # 2. Encode input prompt
287
+ prompt_embeds = self._encode_prompt(
288
+ prompt,
289
+ num_images_per_prompt,
290
+ do_classifier_free_guidance,
291
+ negative_prompt,
292
+ )
293
+
294
+ # 3. Preprocess image
295
+ image = preprocess(image)
296
+ height, width = image.shape[-2:]
297
+
298
+ # 4. set timesteps
299
+ self.scheduler.set_timesteps(num_inference_steps)
300
+ timesteps = self.scheduler.timesteps
301
+
302
+ # 5. Prepare Image latents
303
+ latents_dtype = prompt_embeds.dtype
304
+ image = image.astype(latents_dtype)
305
+ # encode the init image into latents and scale the latents
306
+ image_latents = self.vae_encoder(sample=image)[0]
307
+ if do_classifier_free_guidance:
308
+ uncond_image_latents = np.zeros_like(image_latents)
309
+ image_latents = np.concatenate((image_latents, image_latents, uncond_image_latents), axis=0)
310
+
311
+ # 6. Prepare latent variables
312
+ latents_dtype = prompt_embeds.dtype
313
+ latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
314
+ if latents is None:
315
+ latents = generator.randn(*latents_shape).astype(latents_dtype)
316
+ elif latents.shape != latents_shape:
317
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
318
+ latents = latents * self.scheduler.init_noise_sigma.numpy()
319
+
320
+ # 7. Check that shapes of latents and image match the UNet channels
321
+ num_channels_image = image_latents.shape[1]
322
+ if 4+ num_channels_image != self.unet_in_channels:
323
+ raise ValueError(
324
+ f"Incorrect configuration settings! The config of `pipeline.unet`: expects"
325
+ f" {self.unet_in_channels} but received `num_channels_latents`: {num_channels_latents} +"
326
+ f" `num_channels_image`: {num_channels_image} "
327
+ f" = {num_channels_latents+num_channels_image}. Please verify the config of"
328
+ " `pipeline.unet` or your `image` input."
329
+ )
330
+
331
+ timestep_dtype = next(
332
+ (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
333
+ )
334
+ timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
335
+
336
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
337
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta, torch_gen)
338
+
339
+ # 9. Denoising loop
340
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
341
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
342
+ for i, t in enumerate(timesteps):
343
+ # Expand the latents if we are doing classifier free guidance.
344
+ # The latents are expanded 3 times because for pix2pix the guidance\
345
+ # is applied for both the text and the input image.
346
+ latent_model_input = np.concatenate([latents] * 3) if do_classifier_free_guidance else latents
347
+
348
+ scaled_latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
349
+ scaled_latent_model_input = scaled_latent_model_input.cpu().numpy()
350
+
351
+ scaled_latent_model_input = np.concatenate([scaled_latent_model_input, image_latents], axis=1)
352
+
353
+ # predict the noise residual
354
+
355
+ noise_pred = self.unet(
356
+ sample=scaled_latent_model_input,
357
+ timestep=np.array([t], dtype=timestep_dtype),
358
+ encoder_hidden_states=prompt_embeds,
359
+ )[0]
360
+
361
+ # Hack:
362
+ # For karras style schedulers the model does classifer free guidance using the
363
+ # predicted_original_sample instead of the noise_pred. So we need to compute the
364
+ # predicted_original_sample here if we are using a karras style scheduler.
365
+ if scheduler_is_in_sigma_space:
366
+ step_index = (self.scheduler.timesteps == t).nonzero().item()
367
+ sigma = self.scheduler.sigmas[step_index]
368
+ noise_pred = latent_model_input - sigma.numpy() * noise_pred
369
+
370
+ # perform guidance
371
+ if do_classifier_free_guidance:
372
+ noise_pred_text, noise_pred_image, noise_pred_uncond = np.split(noise_pred, 3)
373
+ noise_pred = (
374
+ noise_pred_uncond
375
+ + guidance_scale * (noise_pred_text - noise_pred_image)
376
+ + image_guidance_scale * (noise_pred_image - noise_pred_uncond)
377
+ )
378
+
379
+ # Hack:
380
+ # For karras style schedulers the model does classifer free guidance using the
381
+ # predicted_original_sample instead of the noise_pred. But the scheduler.step function
382
+ # expects the noise_pred and computes the predicted_original_sample internally. So we
383
+ # need to overwrite the noise_pred here such that the value of the computed
384
+ # predicted_original_sample is correct.
385
+ if scheduler_is_in_sigma_space:
386
+ noise_pred = (noise_pred - latents) / (-sigma)
387
+
388
+ # compute the previous noisy sample x_t -> x_t-1
389
+ scheduler_output = self.scheduler.step(
390
+ noise_pred, t, torch.from_numpy(latents), **extra_step_kwargs
391
+ )
392
+ latents = scheduler_output.prev_sample.numpy()
393
+
394
+ # call the callback, if provided
395
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
396
+ progress_bar.update()
397
+ if callback is not None and i % callback_steps == 0:
398
+ callback(i, t, latents.numpy())
399
+
400
+ # 10. Post-processing
401
+ image = self.decode_latents(latents)
402
+
403
+ # 11. Run safety checker
404
+ image, has_nsfw_concept = self.run_safety_checker(image)
405
+
406
+ # 12. Convert to PIL
407
+ if output_type == "pil":
408
+ image = self.numpy_to_pil(image)
409
+
410
+ if not return_dict:
411
+ return (image, has_nsfw_concept)
412
+
413
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
414
+
415
+ def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
416
+ r"""
417
+ Encodes the prompt into text encoder hidden states.
418
+
419
+ Args:
420
+ prompt (`str` or `List[str]`):
421
+ prompt to be encoded
422
+ num_images_per_prompt (`int`):
423
+ number of images that should be generated per prompt
424
+ do_classifier_free_guidance (`bool`):
425
+ whether to use classifier free guidance or not
426
+ negative_prompt (`str` or `List[str]`):
427
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
428
+ if `guidance_scale` is less than `1`).
429
+ """
430
+ negative_prompt_embeds = None
431
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
432
+
433
+ # get prompt text embeddings
434
+ text_inputs = self.tokenizer(
435
+ prompt,
436
+ padding="max_length",
437
+ max_length=self.tokenizer.model_max_length,
438
+ truncation=True,
439
+ return_tensors="np",
440
+ )
441
+ text_input_ids = text_inputs.input_ids
442
+ untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
443
+
444
+ if not np.array_equal(text_input_ids, untruncated_ids):
445
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
446
+ logger.warning(
447
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
448
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
449
+ )
450
+
451
+ prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
452
+ prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
453
+
454
+ # get unconditional embeddings for classifier free guidance
455
+ if do_classifier_free_guidance:
456
+ uncond_tokens: List[str]
457
+ if negative_prompt is None:
458
+ uncond_tokens = [""] * batch_size
459
+ elif type(prompt) is not type(negative_prompt):
460
+ raise TypeError(
461
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
462
+ f" {type(prompt)}."
463
+ )
464
+ elif isinstance(negative_prompt, str):
465
+ uncond_tokens = [negative_prompt] * batch_size
466
+ elif batch_size != len(negative_prompt):
467
+ raise ValueError(
468
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
469
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
470
+ " the batch size of `prompt`."
471
+ )
472
+ else:
473
+ uncond_tokens = negative_prompt
474
+
475
+ max_length = text_input_ids.shape[-1]
476
+ uncond_input = self.tokenizer(
477
+ uncond_tokens,
478
+ padding="max_length",
479
+ max_length=max_length,
480
+ truncation=True,
481
+ return_tensors="np",
482
+ )
483
+ negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
484
+ negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
485
+
486
+ # For classifier free guidance, we need to do two forward passes.
487
+ # Here we concatenate the unconditional and text embeddings into a single batch
488
+ # to avoid doing two forward passes
489
+ # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
490
+
491
+ prompt_embeds = np.concatenate((prompt_embeds, negative_prompt_embeds, negative_prompt_embeds))
492
+
493
+ return prompt_embeds
494
+
495
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
496
+ def run_safety_checker(self, image):
497
+ if self.safety_checker is not None:
498
+ safety_checker_input = self.feature_extractor(
499
+ self.numpy_to_pil(image), return_tensors="np"
500
+ ).pixel_values.astype(image.dtype)
501
+ # safety_checker does not support batched inputs yet
502
+ images, has_nsfw_concept = [], []
503
+ for i in range(image.shape[0]):
504
+ image_i, has_nsfw_concept_i = self.safety_checker(
505
+ clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
506
+ )
507
+ images.append(image_i)
508
+ has_nsfw_concept.append(has_nsfw_concept_i[0])
509
+ image = np.concatenate(images)
510
+ else:
511
+ has_nsfw_concept = None
512
+ return image, has_nsfw_concept
513
+
514
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
515
+ def prepare_extra_step_kwargs(self, generator, eta, torch_gen):
516
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
517
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
518
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
519
+ # and should be between [0, 1]
520
+
521
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
522
+ extra_step_kwargs = {}
523
+ if accepts_eta:
524
+ extra_step_kwargs["eta"] = eta
525
+
526
+ # check if the scheduler accepts generator
527
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
528
+ if accepts_generator:
529
+ extra_step_kwargs["generator"] = torch_gen
530
+ return extra_step_kwargs
531
+
532
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
533
+ def decode_latents(self, latents):
534
+ latents = 1 / 0.18215 * latents
535
+ image = np.concatenate(
536
+ [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
537
+ )
538
+ image = np.clip(image / 2 + 0.5, 0, 1)
539
+ image = image.transpose((0, 2, 3, 1))
540
+ return image
541
+
542
+ def check_inputs(self, prompt, callback_steps):
543
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
544
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
545
+
546
+ if (callback_steps is None) or (
547
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
548
+ ):
549
+ raise ValueError(
550
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
551
+ f" {type(callback_steps)}."
552
+ )
553
+
patchedstabledifftoonnx/pix2pixUI.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+
4
+ from pipeline_onnx_stable_diffusion_instruct_pix2pix import OnnxStableDiffusionInstructPix2PixPipeline
5
+ from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler
6
+
7
+ def pix2pix(input_img, prompt, guide, iguide, steps, seed):
8
+ if seed == -1:
9
+ generator=None
10
+ else:
11
+ generator=np.random
12
+ generator.seed(seed)
13
+ img = pipe(
14
+ prompt=prompt,
15
+ image=input_img,
16
+ num_inference_steps=steps,
17
+ guidance_scale=guide,
18
+ image_guidance_scale=iguide,
19
+ generator=generator).images[0]
20
+ return img
21
+
22
+ if __name__ == "__main__":
23
+ model="./model/ip2p-base-fp16-vae_ft_mse-autoslicing"
24
+ pipe = OnnxStableDiffusionInstructPix2PixPipeline.from_pretrained(model, provider="DmlExecutionProvider", safety_checker=None)
25
+ pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained(model, subfolder="scheduler")
26
+
27
+ demo=gr.Interface(pix2pix, gr.Image(shape=(512,512)), "image")
28
+ title="ONNX Instruct Pix 2 Pix"
29
+ css = "#imgbox img {max-width: 100% !important; }\n#imgbox div {height: auto;}"
30
+ with gr.Blocks(title=title, css=css) as demo:
31
+ with gr.Row():
32
+ with gr.Column(scale=1):
33
+ seed = gr.Number(value=-1, label="seed", precision=0)
34
+ with gr.Column(scale=14):
35
+ prompt = gr.Textbox(value="", lines=2, label="prompt")
36
+ with gr.Row():
37
+ with gr.Column(scale=1):
38
+ guide = gr.Slider(1.1, 10, value=3, step=0.1, label="Text guidance")
39
+ with gr.Column(scale=1):
40
+ iguide = gr.Slider(1, 10, value=1.1, step=0.1, label="Image guidance")
41
+ with gr.Column(scale=1):
42
+ steps = gr.Slider(10,100, value=30, step=1, label="Steps")
43
+ with gr.Row():
44
+ with gr.Column(scale=1):
45
+ input_img = gr.Image(label="Input Image", type="pil", elem_id="imgbox").style(width=600,height=600)
46
+ with gr.Column(scale=1):
47
+ image_out = gr.Image(value=None, label="Output Image", elem_id="imgbox").style(width=600,height=600)
48
+ gen_btn = gr.Button("Generate", variant="primary", elem_id="gen_button")
49
+
50
+ inputs=[input_img, prompt, guide, iguide, steps, seed]
51
+ gen_btn.click(fn=pix2pix, inputs=inputs, outputs=[image_out])
52
+
53
+ demo.launch()
patchedstabledifftoonnx/quant.py ADDED
File without changes
patchedstabledifftoonnx/quantization.py ADDED
@@ -0,0 +1 @@
 
 
1
+ {"payload":{"allShortcutsEnabled":false,"fileTree":{"src/stable-diffusion-streamlit/pages/model":{"items":[{"name":"__init__.py","path":"src/stable-diffusion-streamlit/pages/model/__init__.py","contentType":"file"},{"name":"copy_pb.py","path":"src/stable-diffusion-streamlit/pages/model/copy_pb.py","contentType":"file"},{"name":"download_onnx.py","path":"src/stable-diffusion-streamlit/pages/model/download_onnx.py","contentType":"file"},{"name":"inference.py","path":"src/stable-diffusion-streamlit/pages/model/inference.py","contentType":"file"},{"name":"prepare.py","path":"src/stable-diffusion-streamlit/pages/model/prepare.py","contentType":"file"},{"name":"quantization.py","path":"src/stable-diffusion-streamlit/pages/model/quantization.py","contentType":"file"},{"name":"thread.py","path":"src/stable-diffusion-streamlit/pages/model/thread.py","contentType":"file"}],"totalCount":7},"src/stable-diffusion-streamlit/pages":{"items":[{"name":"model","path":"src/stable-diffusion-streamlit/pages/model","contentType":"directory"},{"name":"文字转图片.py","path":"src/stable-diffusion-streamlit/pages/文字转图片.py","contentType":"file"},{"name":"画廊.py","path":"src/stable-diffusion-streamlit/pages/画廊.py","contentType":"file"}],"totalCount":3},"src/stable-diffusion-streamlit":{"items":[{"name":"pages","path":"src/stable-diffusion-streamlit/pages","contentType":"directory"},{"name":"entrypoint.sh","path":"src/stable-diffusion-streamlit/entrypoint.sh","contentType":"file"},{"name":"requirements.txt","path":"src/stable-diffusion-streamlit/requirements.txt","contentType":"file"},{"name":"主页.py","path":"src/stable-diffusion-streamlit/主页.py","contentType":"file"}],"totalCount":4},"src":{"items":[{"name":"stable-diffusion-streamlit","path":"src/stable-diffusion-streamlit","contentType":"directory"}],"totalCount":1},"":{"items":[{"name":".github","path":".github","contentType":"directory"},{"name":"doc","path":"doc","contentType":"directory"},{"name":"docker","path":"docker","contentType":"directory"},{"name":"src","path":"src","contentType":"directory"},{"name":".dockerignore","path":".dockerignore","contentType":"file"},{"name":".gitignore","path":".gitignore","contentType":"file"},{"name":"LICENSE","path":"LICENSE","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"},{"name":"README_CN.md","path":"README_CN.md","contentType":"file"}],"totalCount":9}},"fileTreeProcessingTime":17.999537999999998,"foldersToFetch":[],"reducedMotionEnabled":null,"repo":{"id":546836711,"defaultBranch":"main","name":"stable-diffusion-streamlit","ownerLogin":"LowinLi","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2022-10-06T18:19:36.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/33021512?v=4","public":true,"private":false,"isOrgOwned":false},"refInfo":{"name":"main","listCacheKey":"v0:1665123374.24305","canEdit":false,"refType":"branch","currentOid":"f0f89f1ca432cfe89a80c774829893661aa1608f"},"path":"src/stable-diffusion-streamlit/pages/model/quantization.py","currentUser":null,"blob":{"rawLines":["import os","from onnxruntime.quantization import quantize_dynamic, QuantType","","","def quant():"," for root, dirs, filenames in os.walk(\"./onnx\"):"," if \"model.onnx\" in filenames:"," if \"weights.pb\" in filenames:"," external_data = True"," else:"," external_data = False"," quantize_dynamic("," model_input=os.path.join(root, \"model.onnx\"),"," model_output=os.path.join(root, \"model.onnx\"), # 量化后直接覆盖原onnx文件"," per_channel=True,"," reduce_range=True,"," weight_type=QuantType.QUInt8,"," optimize_model=True,"," use_external_data_format=external_data,"," )"," print(\"Quantized model saved at: \", os.path.join(root, \"model.onnx\"))"," if \"weights.pb\" in filenames:"," os.remove(os.path.join(root, \"weights.pb\"))"," print(\"Removed weights.pb\")","","","if __name__ == \"__main__\":"," quant()"],"stylingDirectives":[[{"start":0,"end":6,"cssClass":"pl-k"},{"start":7,"end":9,"cssClass":"pl-s1"}],[{"start":0,"end":4,"cssClass":"pl-k"},{"start":5,"end":16,"cssClass":"pl-s1"},{"start":17,"end":29,"cssClass":"pl-s1"},{"start":30,"end":36,"cssClass":"pl-k"},{"start":37,"end":53,"cssClass":"pl-s1"},{"start":55,"end":64,"cssClass":"pl-v"}],[],[],[{"start":0,"end":3,"cssClass":"pl-k"},{"start":4,"end":9,"cssClass":"pl-en"}],[{"start":4,"end":7,"cssClass":"pl-k"},{"start":8,"end":12,"cssClass":"pl-s1"},{"start":14,"end":18,"cssClass":"pl-s1"},{"start":20,"end":29,"cssClass":"pl-s1"},{"start":30,"end":32,"cssClass":"pl-c1"},{"start":33,"end":35,"cssClass":"pl-s1"},{"start":36,"end":40,"cssClass":"pl-en"},{"start":41,"end":49,"cssClass":"pl-s"}],[{"start":8,"end":10,"cssClass":"pl-k"},{"start":11,"end":23,"cssClass":"pl-s"},{"start":24,"end":26,"cssClass":"pl-c1"},{"start":27,"end":36,"cssClass":"pl-s1"}],[{"start":12,"end":14,"cssClass":"pl-k"},{"start":15,"end":27,"cssClass":"pl-s"},{"start":28,"end":30,"cssClass":"pl-c1"},{"start":31,"end":40,"cssClass":"pl-s1"}],[{"start":16,"end":29,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-c1"},{"start":32,"end":36,"cssClass":"pl-c1"}],[{"start":12,"end":16,"cssClass":"pl-k"}],[{"start":16,"end":29,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-c1"},{"start":32,"end":37,"cssClass":"pl-c1"}],[{"start":12,"end":28,"cssClass":"pl-en"}],[{"start":16,"end":27,"cssClass":"pl-s1"},{"start":27,"end":28,"cssClass":"pl-c1"},{"start":28,"end":30,"cssClass":"pl-s1"},{"start":31,"end":35,"cssClass":"pl-s1"},{"start":36,"end":40,"cssClass":"pl-en"},{"start":41,"end":45,"cssClass":"pl-s1"},{"start":47,"end":59,"cssClass":"pl-s"}],[{"start":16,"end":28,"cssClass":"pl-s1"},{"start":28,"end":29,"cssClass":"pl-c1"},{"start":29,"end":31,"cssClass":"pl-s1"},{"start":32,"end":36,"cssClass":"pl-s1"},{"start":37,"end":41,"cssClass":"pl-en"},{"start":42,"end":46,"cssClass":"pl-s1"},{"start":48,"end":60,"cssClass":"pl-s"},{"start":64,"end":80,"cssClass":"pl-c"}],[{"start":16,"end":27,"cssClass":"pl-s1"},{"start":27,"end":28,"cssClass":"pl-c1"},{"start":28,"end":32,"cssClass":"pl-c1"}],[{"start":16,"end":28,"cssClass":"pl-s1"},{"start":28,"end":29,"cssClass":"pl-c1"},{"start":29,"end":33,"cssClass":"pl-c1"}],[{"start":16,"end":27,"cssClass":"pl-s1"},{"start":27,"end":28,"cssClass":"pl-c1"},{"start":28,"end":37,"cssClass":"pl-v"},{"start":38,"end":44,"cssClass":"pl-v"}],[{"start":16,"end":30,"cssClass":"pl-s1"},{"start":30,"end":31,"cssClass":"pl-c1"},{"start":31,"end":35,"cssClass":"pl-c1"}],[{"start":16,"end":40,"cssClass":"pl-s1"},{"start":40,"end":41,"cssClass":"pl-c1"},{"start":41,"end":54,"cssClass":"pl-s1"}],[],[{"start":12,"end":17,"cssClass":"pl-en"},{"start":18,"end":46,"cssClass":"pl-s"},{"start":48,"end":50,"cssClass":"pl-s1"},{"start":51,"end":55,"cssClass":"pl-s1"},{"start":56,"end":60,"cssClass":"pl-en"},{"start":61,"end":65,"cssClass":"pl-s1"},{"start":67,"end":79,"cssClass":"pl-s"}],[{"start":12,"end":14,"cssClass":"pl-k"},{"start":15,"end":27,"cssClass":"pl-s"},{"start":28,"end":30,"cssClass":"pl-c1"},{"start":31,"end":40,"cssClass":"pl-s1"}],[{"start":16,"end":18,"cssClass":"pl-s1"},{"start":19,"end":25,"cssClass":"pl-en"},{"start":26,"end":28,"cssClass":"pl-s1"},{"start":29,"end":33,"cssClass":"pl-s1"},{"start":34,"end":38,"cssClass":"pl-en"},{"start":39,"end":43,"cssClass":"pl-s1"},{"start":45,"end":57,"cssClass":"pl-s"}],[{"start":16,"end":21,"cssClass":"pl-en"},{"start":22,"end":42,"cssClass":"pl-s"}],[],[],[{"start":0,"end":2,"cssClass":"pl-k"},{"start":3,"end":11,"cssClass":"pl-s1"},{"start":12,"end":14,"cssClass":"pl-c1"},{"start":15,"end":25,"cssClass":"pl-s"}],[{"start":4,"end":9,"cssClass":"pl-en"}]],"csv":null,"csvError":null,"dependabotInfo":{"showConfigurationBanner":false,"configFilePath":null,"networkDependabotPath":"/LowinLi/stable-diffusion-streamlit/network/updates","dismissConfigurationNoticePath":"/settings/dismiss-notice/dependabot_configuration_notice","configurationNoticeDismissed":null,"repoAlertsPath":"/LowinLi/stable-diffusion-streamlit/security/dependabot","repoSecurityAndAnalysisPath":"/LowinLi/stable-diffusion-streamlit/settings/security_analysis","repoOwnerIsOrg":false,"currentUserCanAdminRepo":false},"displayName":"quantization.py","displayUrl":"https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/src/stable-diffusion-streamlit/pages/model/quantization.py?raw=true","headerInfo":{"blobSize":"999 Bytes","deleteInfo":{"deletePath":null,"deleteTooltip":"You must be signed in to make or propose changes"},"editInfo":{"editTooltip":"You must be signed in to make or propose changes"},"ghDesktopPath":"https://desktop.github.com","gitLfsPath":null,"onBranch":true,"shortPath":"76a75f9","siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2FLowinLi%2Fstable-diffusion-streamlit%2Fblob%2Fmain%2Fsrc%2Fstable-diffusion-streamlit%2Fpages%2Fmodel%2Fquantization.py","isCSV":false,"isRichtext":false,"toc":null,"lineInfo":{"truncatedLoc":"28","truncatedSloc":"24"},"mode":"file"},"image":false,"isCodeownersFile":null,"isValidLegacyIssueTemplate":false,"issueTemplateHelpUrl":"https://docs.github.com/articles/about-issue-and-pull-request-templates","issueTemplate":null,"discussionTemplate":null,"language":"Python","large":false,"loggedIn":false,"newDiscussionPath":"/LowinLi/stable-diffusion-streamlit/discussions/new","newIssuePath":"/LowinLi/stable-diffusion-streamlit/issues/new","planSupportInfo":{"repoIsFork":null,"repoOwnedByCurrentUser":null,"requestFullPath":"/LowinLi/stable-diffusion-streamlit/blob/main/src/stable-diffusion-streamlit/pages/model/quantization.py","showFreeOrgGatedFeatureMessage":null,"showPlanSupportBanner":null,"upgradeDataAttributes":null,"upgradePath":null},"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_dockerfile","dismissStackNoticePath":"/settings/dismiss-notice/publish_stack_from_file","releasePath":"/LowinLi/stable-diffusion-streamlit/releases/new?marketplace=true","showPublishActionBanner":false,"showPublishStackBanner":false},"renderImageOrRaw":false,"richText":null,"renderedFileInfo":null,"tabSize":8,"topBannersInfo":{"overridingGlobalFundingFile":false,"globalPreferredFundingPath":null,"repoOwner":"LowinLi","repoName":"stable-diffusion-streamlit","showInvalidCitationWarning":false,"citationHelpUrl":"https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files","showDependabotConfigurationBanner":false,"actionsOnboardingTip":null},"truncated":false,"viewable":true,"workflowRedirectUrl":null,"symbols":{"timedOut":false,"notAnalyzed":false,"symbols":[{"name":"quant","kind":"function","identStart":81,"identEnd":86,"extentStart":77,"extentEnd":957,"fullyQualifiedName":"quant","identUtf16":{"start":{"lineNumber":4,"utf16Col":4},"end":{"lineNumber":4,"utf16Col":9}},"extentUtf16":{"start":{"lineNumber":4,"utf16Col":0},"end":{"lineNumber":23,"utf16Col":43}}}]}},"copilotUserAccess":null,"csrf_tokens":{"/LowinLi/stable-diffusion-streamlit/branches":{"post":"eJjsNRVp8sZQ7zWnchUTmZXYgQPIgC-7asdU5zc71FiIpXRFsTu3r8XNV1yExX9Q4A-dFz6Hl7iOi0tGdOxL8A"}}},"title":"stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/quantization.py at main · LowinLi/stable-diffusion-streamlit","locale":"en"}
patchedstabledifftoonnx/requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ protobuf < 4.0
2
+ numpy
3
+ transformers
4
+ diffusers
5
+ ftfy
6
+ spacy
7
+ scipy
8
+ safetensors
9
+ gradio
10
+ omegaconf
11
+ onnx
12
+ onnxconverter-common
13
+ onnxruntime-directml
14
+ opencv-python
patchedstabledifftoonnx/run-batch.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Running Stable Diffusion ONNX DirectML batches
2
+
3
+ Ever feel like it's a struggle to compare schedulers, guidance scale ... while using a UI?
4
+ Not really interested in coding in Python to resolve it?
5
+
6
+ Hopefully run-batch.py will make your life a bit easier.
7
+
8
+ ## Set up
9
+ Drop run-batch.py where you've installed OnnxDiffusersUI (it'll use the same lwp_pipe.py).
10
+
11
+ As parameter run-batch.py accepts 1 or more paths where it will then check for the existence of settings.json.
12
+ It'll read settings.json, create a batch of images and save them in the directory it just got the settings from.
13
+
14
+ In settings.json you can define the following things:
15
+ - The model, set with the key 'model'. It will look for a directory with that name in the model subdirectory (just like OnnxDiffusersUI).
16
+ - The scheduler, set with the key 'scheduler'. You can also set a list of schedulers to iterate over with the key 'schedulerlist'.
17
+ It currently accepts following values: ddim, deis, dpms_ms, dpms_ss, euler_anc, euler, heun, kdpm2, lms, pndm,unipc.
18
+ If the value is not recognised, it'll switch to pndm. Not all schedulers have been extensively tested and may behave unexpectendly.
19
+ - Guidance scale, set with the key 'scale'. You can also set a list of guidance scales to iterate over with the key 'scalelist'
20
+ - Iteration steps, set with the key 'steps'. You can also set a list of steps to iterate over with the key 'stepslist'
21
+ - Width and height, with the keys 'width' and 'height'. You can also set a list of resolutions to iterate over with the key 'reslist' (e.g. 'reslist': ["512x512","512x768"])
22
+ - The seed, set with the key 'seed'. If you want to iterate over seeds you can define the end with the key 'seedend'.
23
+ Alternatively, you can provide a list of seeds using the key 'seedlist'.
24
+ - The task to perform, set with the key 'task', default is 'txt2img'. Only txt2img has been tested enough, but it also supports img2img and controlnet (more on that below).
25
+ - The prompt, set with the key 'prompt'. If you want to iterate over prompts, you can define them with the key 'promptlist'.
26
+ - A negative prompt, set with the key 'negative_prompt'. Note that the same negative prompt will apply to all prompts you provided.
27
+ - How to parse the prompt, set with the key 'textenc'. Supports 2 values, 'standard' and 'lwp'. Use 'lwp' when you want to use weights and long prompts.
28
+
29
+ If you are doing img2img or controlnet there's more options:
30
+ - Strength, set with the key 'strength'. Expected to be between 0 to 1. You can iterate over a list by setting 'strengthlist'.
31
+
32
+ For img2img or controlnet the directory will also need to contain an image file called input.png. For img2img this acts as source image, for controlnet it is the input for the Controlnet.
33
+
34
+ ## Example
35
+
36
+ Compare the results for a prompt with deis and euler at 20, 30 and 40 steps. Using SD 2.1.
37
+
38
+ ```
39
+ {
40
+ "model": "sd2_1-fp16",
41
+ "seed": 0,
42
+ "seedend": 10,
43
+ "stepslist": [20,30,40],
44
+ "scale": 8.5,
45
+ "schedulerlist": ["deis","euler"],
46
+ "prompt": "(photo portrait) of a ((beautiful)) (woman) wearing (summer dress) in a park, eyes, detailed, high resolution, prime lens",
47
+ "negative_prompt": "bad quality, low resolution",
48
+ "textenc": "lwp"
49
+ }
50
+ ```
patchedstabledifftoonnx/run-batch.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 Dirk Moerenhout. All rights reserved.
2
+ #
3
+ # This program is free software: you can redistribute it and/or modify it under the terms
4
+ # of the GNU General Public License as published by the Free Software Foundation,
5
+ # either version 3 of the License, or (at your option) any later version.
6
+ #
7
+ # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
8
+ # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
9
+ # See the GNU General Public License for more details.
10
+ #
11
+ # You should have received a copy of the GNU General Public License along with this program. If not,
12
+ # see <https://www.gnu.org/licenses/>.
13
+
14
+ # We need sys for argv
15
+ import sys
16
+ # We need os.path for isdir, isfile
17
+ import os.path
18
+ # Our settings are in json format
19
+ import json
20
+ # To be safe we force gc to lower RAM pressure
21
+ import gc
22
+ # We want to replace the text encoder in the pipeline
23
+ import functools
24
+ # We want to parse arguments
25
+ import argparse
26
+ # Numpy is used to provide a random generator
27
+ import numpy
28
+ # We need to load images for img2img
29
+ # We want to save data to PNG
30
+ from PIL import Image, PngImagePlugin
31
+
32
+ # The pipelines
33
+ from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionImg2ImgPipeline
34
+ from pipeline_onnx_stable_diffusion_controlnet import OnnxStableDiffusionControlNetPipeline
35
+ # Model needed to load Text Encoder on CPU
36
+ from diffusers import OnnxRuntimeModel
37
+ # The schedulers
38
+ from diffusers import (
39
+ DDIMScheduler,
40
+ DEISMultistepScheduler,
41
+ DPMSolverMultistepScheduler,
42
+ DPMSolverSinglestepScheduler,
43
+ EulerAncestralDiscreteScheduler,
44
+ EulerDiscreteScheduler,
45
+ HeunDiscreteScheduler,
46
+ KDPM2DiscreteScheduler,
47
+ LMSDiscreteScheduler,
48
+ PNDMScheduler,
49
+ UniPCMultistepScheduler
50
+ )
51
+
52
+ # Support special text encoders
53
+ import OnnxDiffusersUI.lpw_pipe
54
+
55
+ # Default settings
56
+ defSettings = {
57
+ "width": 512,
58
+ "height": 512,
59
+ "reslist": [],
60
+ "steps": 30,
61
+ "stepslist": [],
62
+ "scale": 7.5,
63
+ "scalelist":[],
64
+ "seed":0,
65
+ "seedend":0,
66
+ "seedlist":[],
67
+ "task": "txt2img",
68
+ "model":"sd2_1-fp16",
69
+ "prompt": "",
70
+ "promptlist":[],
71
+ "negative_prompt": "",
72
+ "textenc": "standard",
73
+ "scheduler": "pndm",
74
+ "schedulerlist": [],
75
+ "strength": 0.9,
76
+ "strengthlist": []
77
+ }
78
+
79
+ parser = argparse.ArgumentParser()
80
+
81
+ parser.add_argument(
82
+ "--cpu-textenc",
83
+ action="store_true",
84
+ help="Load Text Encoder on CPU to save VRAM"
85
+ )
86
+
87
+ parser.add_argument(
88
+ "--subdirs",
89
+ action="store_true",
90
+ help="Add subdirs with settings.json to projects to run"
91
+ )
92
+
93
+ parser.add_argument(
94
+ 'project',
95
+ nargs='+',
96
+ type=str,
97
+ help="Provide projects as directories that contain settings.json"
98
+ )
99
+
100
+ args = parser.parse_args()
101
+
102
+ projects=args.project
103
+ if args.subdirs:
104
+ for proj in args.project:
105
+ obj = os.scandir(proj)
106
+ for entry in obj:
107
+ if entry.is_dir():
108
+ if os.path.isfile(f"{proj}/{entry.name}/settings.json"):
109
+ projects.append(f"{proj}/{entry.name}")
110
+
111
+ for proj in projects:
112
+ print("Running project "+proj)
113
+ # Check for directory
114
+ if os.path.isdir(proj):
115
+ if os.path.isfile(proj+"/settings.json"):
116
+ with open(proj+"/settings.json", encoding="utf-8") as confFile:
117
+ projSettings=json.load(confFile)
118
+ # Merge dictionaries with project settings taking precedence
119
+ runSettings = defSettings | projSettings
120
+ # We need prompts
121
+ prereqmet=len(runSettings['prompt'])>0 or len(runSettings['promptlist'])>0
122
+ # We need a model
123
+ model="model/"+runSettings['model']
124
+ prereqmet=prereqmet and os.path.isfile(model+"/unet/model.onnx")
125
+ # We need a start image to do img2img or controlnet
126
+ if runSettings['task']=="img2img" or runSettings['task']=="controlnet":
127
+ infile=proj+"/input.png"
128
+ prereqmet = prereqmet and os.path.isfile(infile)
129
+ if prereqmet:
130
+ sched = {
131
+ "ddim": DDIMScheduler.from_pretrained(model, subfolder="scheduler"),
132
+ "deis": DEISMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
133
+ "dpms_ms": DPMSolverMultistepScheduler.from_pretrained(model, subfolder="scheduler"),
134
+ "dpms_ss": DPMSolverSinglestepScheduler.from_pretrained(model, subfolder="scheduler"),
135
+ "euler_anc": EulerAncestralDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
136
+ "euler": EulerDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
137
+ "heun": HeunDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
138
+ "kdpm2": KDPM2DiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
139
+ "lms": LMSDiscreteScheduler.from_pretrained(model, subfolder="scheduler"),
140
+ "pndm": PNDMScheduler.from_pretrained(model, subfolder="scheduler"),
141
+ "unipc": UniPCMultistepScheduler.from_pretrained(model, subfolder="scheduler")
142
+ }
143
+ if runSettings['task']=="img2img":
144
+ init_image = Image.open(infile).convert("RGB")
145
+ if args.cpu_textenc:
146
+ cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
147
+ pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
148
+ model,
149
+ provider="DmlExecutionProvider",
150
+ revision="onnx",
151
+ scheduler=sched['pndm'],
152
+ text_encoder=cputextenc,
153
+ safety_checker=None,
154
+ feature_extractor=None
155
+ )
156
+ else:
157
+ pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
158
+ model,
159
+ provider="DmlExecutionProvider",
160
+ revision="onnx",
161
+ scheduler=sched['pndm'],
162
+ safety_checker=None,
163
+ feature_extractor=None
164
+ )
165
+ elif runSettings['task']=="controlnet":
166
+ init_image = Image.open(infile).convert("RGB")
167
+ if args.cpu_textenc:
168
+ cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
169
+ pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
170
+ model,
171
+ provider="DmlExecutionProvider",
172
+ revision="onnx",
173
+ scheduler=sched['pndm'],
174
+ text_encoder=cputextenc,
175
+ safety_checker=None,
176
+ feature_extractor=None
177
+ )
178
+ else:
179
+ pipe = OnnxStableDiffusionControlNetPipeline.from_pretrained(
180
+ model,
181
+ provider="DmlExecutionProvider",
182
+ revision="onnx",
183
+ scheduler=sched['pndm'],
184
+ safety_checker=None,
185
+ feature_extractor=None
186
+ )
187
+ else:
188
+ if args.cpu_textenc:
189
+ cputextenc=OnnxRuntimeModel.from_pretrained(model+"/text_encoder")
190
+ pipe = OnnxStableDiffusionPipeline.from_pretrained(
191
+ model,
192
+ provider="DmlExecutionProvider",
193
+ revision="onnx",
194
+ scheduler=sched['pndm'],
195
+ text_encoder=cputextenc,
196
+ safety_checker=None,
197
+ feature_extractor=None
198
+ )
199
+ else:
200
+ pipe = OnnxStableDiffusionPipeline.from_pretrained(
201
+ model,
202
+ provider="DmlExecutionProvider",
203
+ revision="onnx",
204
+ scheduler=sched['pndm'],
205
+ safety_checker=None,
206
+ feature_extractor=None
207
+ )
208
+ if runSettings['textenc'] == "lpw":
209
+ pipe._encode_prompt = functools.partial(lpw_pipe._encode_prompt, pipe)
210
+ generator = numpy.random
211
+ # Set schedulers for projects
212
+ if len(runSettings['schedulerlist'])==0:
213
+ schedulerlist=[runSettings['scheduler']]
214
+ else:
215
+ schedulerlist=runSettings['schedulerlist']
216
+ # Set seeds for project
217
+ if len(runSettings['seedlist'])==0:
218
+ if runSettings['seed']>runSettings['seedend']:
219
+ runSettings['seedend']=runSettings['seed']
220
+ seedlist=range(runSettings['seed'],runSettings['seedend']+1)
221
+ else:
222
+ seedlist=runSettings['seedlist']
223
+ # Set resolustions for project
224
+ if len(runSettings['reslist'])==0:
225
+ restuples=[(runSettings['width'],runSettings['height'])]
226
+ else:
227
+ restuples=[]
228
+ for resstr in runSettings['reslist']:
229
+ restuples.append(tuple(map(int, resstr.split("x"))))
230
+ # Set steps for project
231
+ if len(runSettings['stepslist'])==0:
232
+ stepslist=[runSettings['steps']]
233
+ else:
234
+ stepslist=runSettings['stepslist']
235
+ # Set guidance scales for project
236
+ if len(runSettings['scalelist'])==0:
237
+ scalelist=[runSettings['scale']]
238
+ else:
239
+ scalelist=runSettings['scalelist']
240
+ # Set prompts for project
241
+ if len(runSettings['promptlist'])==0:
242
+ promptlist=[runSettings['prompt']]
243
+ else:
244
+ promptlist=runSettings['promptlist']
245
+ # Set strengths for project
246
+ if len(runSettings['strengthlist'])==0:
247
+ strengthlist=[runSettings['strength']]
248
+ else:
249
+ strengthlist=runSettings['strengthlist']
250
+ imgnr=len(schedulerlist)*len(promptlist)*len(seedlist)*len(restuples)*len(stepslist)*len(scalelist)*len(strengthlist)
251
+ imgdone=0
252
+ for scheduler in schedulerlist:
253
+ if not sched[scheduler]:
254
+ scheduler="pndm"
255
+ pipe.scheduler=sched[scheduler]
256
+ promptnum=0
257
+ for prompt in promptlist:
258
+ for seed in seedlist:
259
+ for res in restuples:
260
+ for steps in stepslist:
261
+ for scale in scalelist:
262
+ for strength in strengthlist:
263
+ if runSettings['task']=="img2img":
264
+ filename=(
265
+ f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
266
+ f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
267
+ "-strength-"+str(strength).replace(".","_")+".png"
268
+ )
269
+ elif runSettings['task']=="controlnet":
270
+ filename=(
271
+ f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
272
+ f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+
273
+ "-strength-"+str(strength).replace(".","_")+".png"
274
+ )
275
+ else:
276
+ filename=(
277
+ f"{proj}/result-p{promptnum}-seed{seed}-{res[0]}x{res[1]}-"+
278
+ f"-steps-{steps}-{scheduler}-scale-"+str(scale).replace(".","_")+".png"
279
+ )
280
+ if not os.path.isfile(filename):
281
+ generator.seed(seed)
282
+ if runSettings['task']=="img2img":
283
+ image = pipe(
284
+ image=init_image,
285
+ strength=strength,
286
+ prompt=prompt,
287
+ negative_prompt=runSettings['negative_prompt'],
288
+ num_inference_steps=steps,
289
+ guidance_scale=scale,
290
+ generator=generator).images[0]
291
+ elif runSettings['task']=="controlnet":
292
+ image = pipe(
293
+ image=init_image,
294
+ controlnet_conditioning_scale=strength,
295
+ prompt=prompt,
296
+ negative_prompt=runSettings['negative_prompt'],
297
+ num_inference_steps=steps,
298
+ guidance_scale=scale,
299
+ generator=generator).images[0]
300
+ else:
301
+ image = pipe(
302
+ prompt=prompt,
303
+ negative_prompt=runSettings['negative_prompt'],
304
+ width=res[0],
305
+ height=res[1],
306
+ num_inference_steps=steps,
307
+ guidance_scale=scale,
308
+ generator = generator).images[0]
309
+ metadata = PngImagePlugin.PngInfo()
310
+ metadata.add_text("Generator","Stable Diffusion ONNX https://github.com/Amblyopius/Stable-Diffusion-ONNX-FP16")
311
+ metadata.add_text("SD Model (local name)",model)
312
+ metadata.add_text("SD Prompt",prompt)
313
+ metadata.add_text("SD Negative Prompt",runSettings['negative_prompt'])
314
+ metadata.add_text("SD Scheduler",scheduler)
315
+ metadata.add_text("SD Steps",str(steps))
316
+ metadata.add_text("SD Guidance Scale",str(scale))
317
+ image.save(filename, pnginfo = metadata)
318
+ else:
319
+ print("Skipping existing image!")
320
+ imgdone+=1
321
+ print(f"Finished {imgdone}/{imgnr}")
322
+ promptnum+=1
323
+ del pipe
324
+ gc.collect()
325
+ else:
326
+ print("Minimum requirements not met! Skipping")
327
+ else:
328
+ print("Settings not found! Skipping")
329
+ else:
330
+ print("Path not found! Skipping")
patchedstabledifftoonnx/sd_env/bin/python ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:682d5b916b076ae9e1f1399b89e7f4b521599cf04f669cbd65af0a317bc6033e
3
+ size 5912968
patchedstabledifftoonnx/sd_env/bin/python3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:682d5b916b076ae9e1f1399b89e7f4b521599cf04f669cbd65af0a317bc6033e
3
+ size 5912968
patchedstabledifftoonnx/sd_env/bin/python3.10 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:682d5b916b076ae9e1f1399b89e7f4b521599cf04f669cbd65af0a317bc6033e
3
+ size 5912968
patchedstabledifftoonnx/sd_env/pyvenv.cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ home = /usr/bin
2
+ include-system-site-packages = false
3
+ version = 3.10.6
patchedstabledifftoonnx/stable-diffusion-streamlit/.dockerignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ src/stable-diffusion-streamlit/pages/model/result
2
+ src/stable-diffusion-streamlit/pages/model/onnx
3
+ __pycache__
4
+ docker/.env
5
+ tag.sh
6
+ docker/volume
patchedstabledifftoonnx/stable-diffusion-streamlit/.github/workflows/build-image.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build Image
2
+
3
+ on: push
4
+
5
+ jobs:
6
+ build:
7
+ runs-on: ubuntu-20.04
8
+ steps:
9
+ - uses: actions/checkout@v2
10
+ - name: Login to Registry
11
+ if: startsWith(github.ref, 'refs/tags')
12
+ run: docker login --username=${{ secrets.DOCKER_USERNAME }} --password ${{ secrets.DOCKER_PASSWORD }}
13
+ - name: Push Image
14
+ if: startsWith(github.ref, 'refs/tags')
15
+ run: |
16
+ cd docker && bash build.sh ${{ secrets.HUGGINGFACE_TOKEN }}
patchedstabledifftoonnx/stable-diffusion-streamlit/.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ result
2
+ onnx
3
+ __pycache__
4
+ docker/.env
5
+ tag.sh
6
+ docker/volume
patchedstabledifftoonnx/stable-diffusion-streamlit/LICENSE ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
2
+
3
+ CreativeML Open RAIL-M
4
+ dated August 22, 2022
5
+
6
+ Section I: PREAMBLE
7
+
8
+ Multimodal generative models are being widely adopted and used, and have
9
+ the potential to transform the way artists, among other individuals,
10
+ conceive and benefit from AI or ML technologies as a tool for content
11
+ creation.
12
+
13
+ Notwithstanding the current and potential benefits that these artifacts
14
+ can bring to society at large, there are also concerns about potential
15
+ misuses of them, either due to their technical limitations or ethical
16
+ considerations.
17
+
18
+ In short, this license strives for both the open and responsible
19
+ downstream use of the accompanying model. When it comes to the open
20
+ character, we took inspiration from open source permissive licenses
21
+ regarding the grant of IP rights. Referring to the downstream responsible
22
+ use, we added use-based restrictions not permitting the use of the Model
23
+ in very specific scenarios, in order for the licensor to be able to
24
+ enforce the license in case potential misuses of the Model may occur. At
25
+ the same time, we strive to promote open and responsible research on
26
+ generative models for art and content generation.
27
+
28
+ Even though downstream derivative versions of the model could be released
29
+ under different licensing terms, the latter will always have to include -
30
+ at minimum - the same use-based restrictions as the ones in the original
31
+ license (this license). We believe in the intersection between open and
32
+ responsible AI development; thus, this License aims to strike a balance
33
+ between both in order to enable responsible open-science in the field of
34
+ AI.
35
+
36
+ This License governs the use of the model (and its derivatives) and is
37
+ informed by the model card associated with the model.
38
+
39
+ NOW THEREFORE, You and Licensor agree as follows:
40
+
41
+ 1. Definitions
42
+
43
+ - "License" means the terms and conditions for use, reproduction, and
44
+ Distribution as defined in this document.
45
+ - "Data" means a collection of information and/or content extracted from
46
+ the dataset used with the Model, including to train, pretrain, or
47
+ otherwise evaluate the Model. The Data is not licensed under this
48
+ License.
49
+ - "Output" means the results of operating a Model as embodied in
50
+ informational content resulting therefrom.
51
+ - "Model" means any accompanying machine-learning based assemblies
52
+ (including checkpoints), consisting of learnt weights, parameters
53
+ (including optimizer states), corresponding to the model architecture as
54
+ embodied in the Complementary Material, that have been trained or tuned,
55
+ in whole or in part on the Data, using the Complementary Material.
56
+ - "Derivatives of the Model" means all modifications to the Model, works
57
+ based on the Model, or any other model which is created or initialized by
58
+ transfer of patterns of the weights, parameters, activations or output of
59
+ the Model, to the other model, in order to cause the other model to
60
+ perform similarly to the Model, including - but not limited to -
61
+ distillation methods entailing the use of intermediate data
62
+ representations or methods based on the generation of synthetic data by
63
+ the Model for training the other model.
64
+ - "Complementary Material" means the accompanying source code and scripts
65
+ used to define, run, load, benchmark or evaluate the Model, and used to
66
+ prepare data for training or evaluation, if any. This includes any
67
+ accompanying documentation, tutorials, examples, etc, if any.
68
+ - "Distribution" means any transmission, reproduction, publication or
69
+ other sharing of the Model or Derivatives of the Model to a third party,
70
+ including providing the Model as a hosted service made available by
71
+ electronic or other remote means - e.g. API-based or web access.
72
+ - "Licensor" means the copyright owner or entity authorized by the
73
+ copyright owner that is granting the License, including the persons or
74
+ entities that may have rights in the Model and/or distributing the Model.
75
+ - "You" (or "Your") means an individual or Legal Entity exercising
76
+ permissions granted by this License and/or making use of the Model for
77
+ whichever purpose and in any field of use, including usage of the Model
78
+ in an end-use application - e.g. chatbot, translator, image generator.
79
+ - "Third Parties" means individuals or legal entities that are not under
80
+ common control with Licensor or You.
81
+ - "Contribution" means any work of authorship, including the original
82
+ version of the Model and any modifications or additions to that Model or
83
+ Derivatives of the Model thereof, that is intentionally submitted to
84
+ Licensor for inclusion in the Model by the copyright owner or by an
85
+ individual or Legal Entity authorized to submit on behalf of the
86
+ copyright owner. For the purposes of this definition, "submitted" means
87
+ any form of electronic, verbal, or written communication sent to the
88
+ Licensor or its representatives, including but not limited to
89
+ communication on electronic mailing lists, source code control systems,
90
+ and issue tracking systems that are managed by, or on behalf of, the
91
+ Licensor for the purpose of discussing and improving the Model, but
92
+ excluding communication that is conspicuously marked or otherwise
93
+ designated in writing by the copyright owner as "Not a Contribution."
94
+ - "Contributor" means Licensor and any individual or Legal Entity on
95
+ behalf of whom a Contribution has been received by Licensor and
96
+ subsequently incorporated within the Model.
97
+
98
+ Section II: INTELLECTUAL PROPERTY RIGHTS
99
+
100
+ Both copyright and patent grants apply to the Model, Derivatives of the
101
+ Model and Complementary Material. The Model and Derivatives of the Model
102
+ are subject to additional terms as described in Section III.
103
+
104
+ 2. Grant of Copyright License. Subject to the terms and conditions of
105
+ this License, each Contributor hereby grants to You a perpetual,
106
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright
107
+ license to reproduce, prepare, publicly display, publicly perform,
108
+ sublicense, and distribute the Complementary Material, the Model, and
109
+ Derivatives of the Model.
110
+ 3. Grant of Patent License. Subject to the terms and conditions of this
111
+ License and where and as applicable, each Contributor hereby grants to
112
+ You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
113
+ irrevocable (except as stated in this paragraph) patent license to make,
114
+ have made, use, offer to sell, sell, import, and otherwise transfer the
115
+ Model and the Complementary Material, where such license applies only to
116
+ those patent claims licensable by such Contributor that are necessarily
117
+ infringed by their Contribution(s) alone or by combination of their
118
+ Contribution(s) with the Model to which such Contribution(s) was
119
+ submitted. If You institute patent litigation against any entity
120
+ (including a cross-claim or counterclaim in a lawsuit) alleging that the
121
+ Model and/or Complementary Material or a Contribution incorporated within
122
+ the Model and/or Complementary Material constitutes direct or
123
+ contributory patent infringement, then any patent licenses granted to You
124
+ under this License for the Model and/or Work shall terminate as of the
125
+ date such litigation is asserted or filed.
126
+
127
+ Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
128
+
129
+ 4. Distribution and Redistribution. You may host for Third Party remote
130
+ access purposes (e.g. software-as-a-service), reproduce and distribute
131
+ copies of the Model or Derivatives of the Model thereof in any medium,
132
+ with or without modifications, provided that You meet the following
133
+ conditions:
134
+ Use-based restrictions as referenced in paragraph 5 MUST be included as
135
+ an enforceable provision by You in any type of legal agreement (e.g. a
136
+ license) governing the use and/or distribution of the Model or
137
+ Derivatives of the Model, and You shall give notice to subsequent users
138
+ You Distribute to, that the Model or Derivatives of the Model are subject
139
+ to paragraph 5. This provision does not apply to the use of Complementary
140
+ Material.
141
+ You must give any Third Party recipients of the Model or Derivatives of
142
+ the Model a copy of this License;
143
+ You must cause any modified files to carry prominent notices stating that
144
+ You changed the files;
145
+ You must retain all copyright, patent, trademark, and attribution notices
146
+ excluding those notices that do not pertain to any part of the Model,
147
+ Derivatives of the Model.
148
+ You may add Your own copyright statement to Your modifications and may
149
+ provide additional or different license terms and conditions - respecting
150
+ paragraph 4.a. - for use, reproduction, or Distribution of Your
151
+ modifications, or for any such Derivatives of the Model as a whole,
152
+ provided Your use, reproduction, and Distribution of the Model otherwise
153
+ complies with the conditions stated in this License.
154
+ 5. Use-based restrictions. The restrictions set forth in Attachment A are
155
+ considered Use-based restrictions. Therefore You cannot use the Model and
156
+ the Derivatives of the Model for the specified restricted uses. You may
157
+ use the Model subject to this License, including only for lawful purposes
158
+ and in accordance with the License. Use may include creating any content
159
+ with, finetuning, updating, running, training, evaluating and/or
160
+ reparametrizing the Model. You shall require all of Your users who use
161
+ the Model or a Derivative of the Model to comply with the terms of this
162
+ paragraph (paragraph 5).
163
+ 6. The Output You Generate. Except as set forth herein, Licensor claims
164
+ no rights in the Output You generate using the Model. You are accountable
165
+ for the Output you generate and its subsequent uses. No use of the output
166
+ can contravene any provision as stated in the License.
167
+
168
+ Section IV: OTHER PROVISIONS
169
+
170
+ 7. Updates and Runtime Restrictions. To the maximum extent permitted by
171
+ law, Licensor reserves the right to restrict (remotely or otherwise)
172
+ usage of the Model in violation of this License, update the Model through
173
+ electronic means, or modify the Output of the Model based on updates. You
174
+ shall undertake reasonable efforts to use the latest version of the
175
+ Model.
176
+ 8. Trademarks and related. Nothing in this License permits You to make
177
+ use of Licensors’ trademarks, trade names, logos or to otherwise suggest
178
+ endorsement or misrepresent the relationship between the parties; and any
179
+ rights not expressly granted herein are reserved by the Licensors.
180
+ 9. Disclaimer of Warranty. Unless required by applicable law or agreed to
181
+ in writing, Licensor provides the Model and the Complementary Material
182
+ (and each Contributor provides its Contributions) on an "AS IS" BASIS,
183
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
184
+ including, without limitation, any warranties or conditions of TITLE,
185
+ NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
186
+ You are solely responsible for determining the appropriateness of using
187
+ or redistributing the Model, Derivatives of the Model, and the
188
+ Complementary Material and assume any risks associated with Your exercise
189
+ of permissions under this License.
190
+ 10. Limitation of Liability. In no event and under no legal theory,
191
+ whether in tort (including negligence), contract, or otherwise, unless
192
+ required by applicable law (such as deliberate and grossly negligent
193
+ acts) or agreed to in writing, shall any Contributor be liable to You for
194
+ damages, including any direct, indirect, special, incidental, or
195
+ consequential damages of any character arising as a result of this
196
+ License or out of the use or inability to use the Model and the
197
+ Complementary Material (including but not limited to damages for loss of
198
+ goodwill, work stoppage, computer failure or malfunction, or any and all
199
+ other commercial damages or losses), even if such Contributor has been
200
+ advised of the possibility of such damages.
201
+ 11. Accepting Warranty or Additional Liability. While redistributing the
202
+ Model, Derivatives of the Model and the Complementary Material thereof,
203
+ You may choose to offer, and charge a fee for, acceptance of support,
204
+ warranty, indemnity, or other liability obligations and/or rights
205
+ consistent with this License. However, in accepting such obligations, You
206
+ may act only on Your own behalf and on Your sole responsibility, not on
207
+ behalf of any other Contributor, and only if You agree to indemnify,
208
+ defend, and hold each Contributor harmless for any liability incurred by,
209
+ or claims asserted against, such Contributor by reason of your accepting
210
+ any such warranty or additional liability.
211
+ 12. If any provision of this License is held to be invalid, illegal or
212
+ unenforceable, the remaining provisions shall be unaffected thereby and
213
+ remain valid as if such provision had not been set forth herein.
214
+ END OF TERMS AND CONDITIONS
215
+
216
+
217
+
218
+
219
+ Attachment A
220
+
221
+ Use Restrictions
222
+
223
+ You agree not to use the Model or Derivatives of the Model:
224
+ - In any way that violates any applicable national, federal, state, local
225
+ or international law or regulation;
226
+ - For the purpose of exploiting, harming or attempting to exploit or harm
227
+ minors in any way;
228
+ - To generate or disseminate verifiably false information and/or content
229
+ with the purpose of harming others;
230
+ - To generate or disseminate personal identifiable information that can
231
+ be used to harm an individual;
232
+ - To defame, disparage or otherwise harass others;
233
+ - For fully automated decision making that adversely impacts an
234
+ individual’s legal rights or otherwise creates or modifies a binding,
235
+ enforceable obligation;
236
+ - For any use intended to or which has the effect of discriminating
237
+ against or harming individuals or groups based on online or offline
238
+ social behavior or known or predicted personal or personality
239
+ characteristics;
240
+ - To exploit any of the vulnerabilities of a specific group of persons
241
+ based on their age, social, physical or mental characteristics, in order
242
+ to materially distort the behavior of a person pertaining to that group
243
+ in a manner that causes or is likely to cause that person or another
244
+ person physical or psychological harm;
245
+ - For any use intended to or which has the effect of discriminating
246
+ against individuals or groups based on legally protected characteristics
247
+ or categories;
248
+ - To provide medical advice and medical results interpretation;
249
+ - To generate or disseminate information for the purpose to be used for
250
+ administration of justice, law enforcement, immigration or asylum
251
+ processes, such as predicting an individual will commit fraud/crime
252
+ commitment (e.g. by text profiling, drawing causal relationships between
253
+ assertions made in documents, indiscriminate and arbitrarily-targeted
254
+ use).
patchedstabledifftoonnx/stable-diffusion-streamlit/README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [**中文说明**](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/README_CN.md) | [**English**](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/README.md)
2
+
3
+ # stable-diffusion-streamlit
4
+
5
+ - [1.Introduction](#1-introduction)
6
+ - [2.Getting Started](#2-getting-started)
7
+ - [3.Quantization Performance](#3-quantization-performance)
8
+ - [4.Streamlit Progress Bar](#4-streamlit-progress-bar)
9
+ - [5.To Do](#5-to-do)
10
+ - [6.Get Help](#6-get-help)
11
+ - [7.Acknowledgements](#7-acknowledgements)
12
+
13
+ ## 1. Introduction
14
+
15
+ + Create beautiful apps using [Streamlit](https://github.com/streamlit/streamlit) to test [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) model quantized by [OnnxRuntime](https://github.com/microsoft/onnxruntime) **cutting down memory 75%**.
16
+ + **Streamlit**:
17
+ + an open-source app framework for Machine Learning and Data Science teams. Create beautiful web apps in minutes.
18
+ + **CompVis/stable-diffusion-v1-4**:
19
+ + a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
20
+ + **OnnxRuntime**:
21
+ + a cross-platform, faster inference and lower costs accelerator for machine learning models.
22
+
23
+
24
+ ## 2. Getting Started
25
+
26
+ ### 2.1. Deployment
27
+ + docker-compose up -d
28
+ ```yaml
29
+ version: "2.3"
30
+ services:
31
+ stable-diffusion-streamlit-onnxquantized:
32
+ container_name: stable-diffusion-streamlit-onnxquantized
33
+ image: lowinli98/stable-diffusion-streamlit-onnxquantized:v0.2
34
+ expose:
35
+ - 8501
36
+ ports:
37
+ - "8501:8501"
38
+ environment:
39
+ - APP_TITLE=Stable Diffusion Streamlit
40
+ restart: always
41
+ volumes:
42
+ - /etc/localtime:/etc/localtime
43
+ - ./volume:/app/pages/model/result
44
+ ```
45
+
46
+ ### 2.2. Usage
47
+ + 2.2.1. Copy an awesome prompt from Blogs like [best-100-stable-diffusion-prompts](https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts/) or [50-text-to-image-prompts-for-ai](https://decentralizedcreator.com/50-text-to-image-prompts-for-ai-art-generator-stable-diffusion-a-visual-treat-inside/)
48
+ + 2.2.2. Open http://localhost:8501 and click "文本转图片" on the left sidebar.
49
+ + 2.2.3. Fix the runtime parameters, paste your prompt into the text area and click the "开始生成" button.
50
+
51
+ ![](./doc/gif/use1.gif)
52
+
53
+ + 2.2.4. Wait for a while until the progress bar goes to the end, then you will get a generated image.
54
+
55
+ ![](./doc/gif/use2.gif)
56
+
57
+ + 2.2.5. Click "画廊" on the left sidebar to see all the images you had generated.
58
+
59
+ ![](./doc/gif/use3.gif)
60
+
61
+
62
+ ## 3. Quantization Performance
63
+ + The model in the docker container has been quantized by OnnxRuntime in the building of the docker image.
64
+
65
+ + [dockerfile](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/docker/dockerfile)
66
+ + [building progress in Github Action](https://github.com/LowinLi/stable-diffusion-streamlit/actions/runs/3202674839/jobs/5231895605)
67
+
68
+ + The quantized model will be smaller and cut down the inference time a little(UINT8), while the performance of the image generated is almost the same as the original model.
69
+ + This is an amazing feature because [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) can be deployed on most home computers. The following table shows the comparison of the quantized model and the original model.
70
+
71
+ ---
72
+ | model | memory used | inference 49 steps waste time |
73
+ | --- | --- | --- |
74
+ | pytorch | 5.2GB | 6m56s |
75
+ | onnx | 5.0GB | 4m34s |
76
+ | onnx-quantized(UINT8) | 1.3GB | 4m29s |
77
+
78
+ + CPU:
79
+ + Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
80
+ + 10 core
81
+
82
+
83
+ + image generated by PyTorch model
84
+
85
+ ![](./doc/pic/torch.png)
86
+ + image generated by Onnx model
87
+
88
+ ![](./doc/pic/onnx.png)
89
+ + image generated by Onnx-Quantized(UINT8) model
90
+
91
+ ![](./doc/pic/onnxquantized.png)
92
+
93
+ ## 4. Streamlit Progress Bar
94
+ To generate an awesome image, the model needs to be inferences with many steps. So it will take a long time to finish the whole pipeline. To make the user experience better, a progress bar is added to show the pipeline progress.
95
+ With another thread in Python, the progress bar can be updated by the pipeline scheduler counter.
96
+
97
+
98
+
99
+ ## 5. To Do
100
+
101
+ - [ ] Add the Text-Guided Image-to-Image Pipeline in [Huggingface/Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/img2img)
102
+ - [ ] Add the Text-Guided Image-Inpainting Pipeline in [Huggingface/Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/inpaint)
103
+
104
+ ## 6. Get Help
105
+
106
+ + Contact me at [email protected]
107
+ + If appropriate, open an issue on GitHub
108
+
109
+ ## 7. Acknowledgements
110
+
111
+ + [Huggingface/Diffusers](https://github.com/huggingface/diffusers)
112
+ + [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion)
113
+ + [Streamlit](https://github.com/streamlit/streamlit)
114
+ + [OnnxRuntime](https://github.com/microsoft/onnxruntime)
patchedstabledifftoonnx/stable-diffusion-streamlit/README_CN.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [**中文说明**](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/README_CN.md) | [**English**](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/README.md)
2
+
3
+ # stable-diffusion-streamlit
4
+
5
+ - [1.简介](#1-简介)
6
+ - [2.快速开始](#2-快速开始)
7
+ - [3.模型量化提速表现](#3-模型量化提速表现)
8
+ - [4.Streamlit进度条](#4-Streamlit进度条)
9
+ - [5.下一步](#5-下一步)
10
+ - [6.帮助](#6-帮助)
11
+ - [7.致谢](#7-致谢)
12
+
13
+ ## 1. 简介
14
+
15
+ + **使用[Streamlit](https://github.com/streamlit/streamlit)构建一个Web服务,测试使用[OnnxRuntime](https://github.com/microsoft/onnxruntime)量化压缩后的[CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)模型做图片生成**.
16
+ + **Streamlit**:
17
+ + 一个流行的开源框架,可以快速搭建机器学习和数据科学团队的Web应用。
18
+ + **CompVis/stable-diffusion-v1-4**:
19
+ + 一个流行的扩散模型,可以通过文字提示生成栩栩如生的高质量图片。
20
+ + **OnnxRuntime**:
21
+ + 微软推出的一款推理框架,用户可以非常便利的量化压缩模型。
22
+
23
+
24
+ ## 2. 快速开始
25
+
26
+ ### 2.1. 部署
27
+ + docker-compose up -d
28
+ ```yaml
29
+ version: "2.3"
30
+ services:
31
+ stable-diffusion-streamlit-onnxquantized:
32
+ container_name: stable-diffusion-streamlit-onnxquantized
33
+ image: lowinli98/stable-diffusion-streamlit-onnxquantized:v0.2
34
+ expose:
35
+ - 8501
36
+ ports:
37
+ - "8501:8501"
38
+ environment:
39
+ - APP_TITLE=Stable Diffusion Streamlit
40
+ restart: always
41
+ volumes:
42
+ - /etc/localtime:/etc/localtime
43
+ - ./volume:/app/pages/model/result
44
+ ```
45
+
46
+ ### 2.2. 使用
47
+ + 2.2.1. 从博客[best-100-stable-diffusion-prompts](https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts/)或[50-text-to-image-prompts-for-ai](https://decentralizedcreator.com/50-text-to-image-prompts-for-ai-art-generator-stable-diffusion-a-visual-treat-inside/)复制一个文本提示。
48
+ + 2.2.2. 打开http://localhost:8501,在侧边栏点击"文本转图片"。
49
+ + 2.2.3. 修改运行参数, 粘贴提示,点击"开始生成"。
50
+
51
+ ![](./doc/gif/use1.gif)
52
+
53
+ + 2.2.4. 待进度条走完后,页面直接展示生成的图片
54
+
55
+ ![](./doc/gif/use2.gif)
56
+
57
+ + 2.2.5. 点击侧边栏的"画廊"查看所有历史生成的图片
58
+
59
+ ![](./doc/gif/use3.gif)
60
+
61
+
62
+ ## 3. 模型量化提速表现
63
+ + 服务中使用的模型已经在打镜像阶段就做了OnnxRuntime量化压缩处理,详见:
64
+
65
+ + [dockerfile](https://github.com/LowinLi/stable-diffusion-streamlit/blob/main/docker/dockerfile)
66
+ + [Github Action的镜像构建日志](https://github.com/LowinLi/stable-diffusion-streamlit/actions/runs/3202674839/jobs/5231895605)
67
+
68
+ + 量化后的模型尺寸降低很多、推理速度提高一点点(UINT8), 同时保持和原模型几乎一样的生成图片质量.
69
+ + 这一点意味着,[CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)模型可以被部署在大多数家用电脑上,并进行调试。以下是几种模型的比较:
70
+
71
+ ---
72
+ | 模型 | 内存 | 49步推断用时 |
73
+ | --- | --- | --- |
74
+ | pytorch | 5.2GB | 6m56s |
75
+ | onnx | 5.0GB | 4m34s |
76
+ | onnx-quantized(UINT8) | 1.3GB | 4m29s |
77
+
78
+ + CPU:
79
+ + Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
80
+ + 10 core
81
+
82
+
83
+ + PyTorch模型生成的图片
84
+
85
+ ![](./doc/pic/torch.png)
86
+ + Onnx模型生成的图片
87
+
88
+ ![](./doc/pic/onnx.png)
89
+ + Onnx-quantized(UINT8)模型生成的图片
90
+
91
+ ![](./doc/pic/onnxquantized.png)
92
+
93
+ ## 4. Streamlit进度条
94
+ 为了生成高质量图片,扩散模型一般要推断很多步,这会比较耗时。为了提升用户体验,在Streamlit页面做了一个进度条,通过另一个线程,监控推断步数,并更新到进度条中。
95
+
96
+ ## 5. 下一步
97
+
98
+ - [ ] 增加[Huggingface/Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/img2img)中的图像生成图像流程
99
+ - [ ] 增加[Huggingface/Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/inpaint)中的抠图生成图像流程
100
+
101
+ ## 6. 帮助
102
+
103
+ + 联系我的邮箱[email protected]
104
+ + 有任何问题,欢迎在Github上提Issue
105
+
106
+ ## 7. 致谢
107
+
108
+ + [Huggingface/Diffusers](https://github.com/huggingface/diffusers)
109
+ + [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion)
110
+ + [Streamlit](https://github.com/streamlit/streamlit)
111
+ + [OnnxRuntime](https://github.com/microsoft/onnxruntime)
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use1.gif ADDED

Git LFS Details

  • SHA256: d355f1c49d1e541a4dc0869cb884a288cc8f9f1c1fb003ac6dad13cf94dc2d89
  • Pointer size: 132 Bytes
  • Size of remote file: 1.04 MB
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use2.gif ADDED

Git LFS Details

  • SHA256: 9cd6952004c7197a41cdd3900c37b22526e69c0bfa642fec9fd4014e7530a36d
  • Pointer size: 133 Bytes
  • Size of remote file: 24.4 MB
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/gif/use3.gif ADDED

Git LFS Details

  • SHA256: f66d3dea4fde8c8f2ffa453f5c4df557601f02a9cbbb10f795d21afc1585e9af
  • Pointer size: 133 Bytes
  • Size of remote file: 30.7 MB
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/onnx.png ADDED
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/onnxquantized.png ADDED
patchedstabledifftoonnx/stable-diffusion-streamlit/doc/pic/torch.png ADDED
patchedstabledifftoonnx/stable-diffusion-streamlit/docker/build.sh ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
3
+ BUILDROOT=$DIR/..
4
+
5
+ cd $BUILDROOT
6
+
7
+ CONTAINER="lowinli98/stable-diffusion-streamlit-onnxquantized" #替换成你的容器名称
8
+ VERSION=`git describe --abbrev=0 --tags`
9
+
10
+ IMAGE_NAME="${CONTAINER}:${VERSION}"
11
+ cmd="docker build -t $IMAGE_NAME -f $DIR/dockerfile $BUILDROOT --build-arg HUGGINGFACE_TOKEN=$1"
12
+ echo $cmd
13
+ eval $cmd
14
+
15
+ docker push $IMAGE_NAME
patchedstabledifftoonnx/stable-diffusion-streamlit/docker/docker-compose.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ version: "2.3"
2
+ services:
3
+ stable-diffusion-streamlit-onnxquantized:
4
+ container_name: stable-diffusion-streamlit-onnxquantized
5
+ image: lowinli98/stable-diffusion-streamlit-onnxquantized:v0.2
6
+ expose:
7
+ - 8501
8
+ ports:
9
+ - "8501:8501"
10
+ environment:
11
+ - APP_TITLE=Stable Diffusion Streamlit
12
+ restart: always
13
+ volumes:
14
+ - /etc/localtime:/etc/localtime
15
+ - ./volume:/app/pages/model/result
patchedstabledifftoonnx/stable-diffusion-streamlit/docker/dockerfile ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.8.7-slim as builder
2
+ ARG HUGGINGFACE_TOKEN
3
+ ENV HUGGINGFACE_TOKEN=${HUGGINGFACE_TOKEN}
4
+ COPY docker/requirements.txt /app/
5
+
6
+ # install
7
+ RUN echo "==> Installing ..." && \
8
+ pip3 install --no-cache-dir --upgrade pip && \
9
+ pip3 install virtualenv && \
10
+ virtualenv -p /usr/local/bin/python /app/env && \
11
+ /app/env/bin/pip install --no-cache-dir --upgrade pip && \
12
+ /app/env/bin/pip install --no-cache-dir -r /app/requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
13
+
14
+ COPY src/stable-diffusion-streamlit /app/
15
+ RUN cd /app/pages/model/ && \
16
+ /app/env/bin/python prepare.py
17
+
18
+ FROM python:3.8.7-slim
19
+ COPY --from=builder /app /app
20
+ WORKDIR /app
21
+ CMD ["/app/env/bin/streamlit", "run", "主页.py"]
patchedstabledifftoonnx/stable-diffusion-streamlit/docker/entrypoint.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ streamlit run 主页.py
patchedstabledifftoonnx/stable-diffusion-streamlit/docker/requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ftfy==6.1.1
2
+ onnx==1.12.0
3
+ onnxruntime==1.12.1
4
+ streamlit==1.13.0
5
+ transformers==4.22.2
6
+ diffusers==0.4.0
7
+ torch==1.10.0+cpu
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/entrypoint.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ streamlit run 主页.py
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/__init__.py ADDED
File without changes
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/copy_pb.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+
5
+ def copy_weights():
6
+ for (root, _, file_list) in os.walk(
7
+ os.path.join(
8
+ os.environ["HOME"],
9
+ ".cache/huggingface/diffusers/models--CompVis--stable-diffusion-v1-4",
10
+ )
11
+ ):
12
+ if "weights.pb" in file_list:
13
+ shutil.copyfile(os.path.join(root, "weights.pb"), "./onnx/unet/weights.pb")
14
+
15
+
16
+ if __name__ == "__main__":
17
+ copy_weights()
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/download_onnx.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from diffusers import StableDiffusionOnnxPipeline
3
+
4
+
5
+ def download_save():
6
+ token = os.environ.get("HUGGINGFACE_TOKEN")
7
+
8
+ pipe = StableDiffusionOnnxPipeline.from_pretrained(
9
+ "CompVis/stable-diffusion-v1-4",
10
+ revision="onnx",
11
+ provider="CPUExecutionProvider",
12
+ use_auth_token=token,
13
+ )
14
+ for tmp_dir in ["safety_checker", "text_encoder", "unet", "vae_decoder"]:
15
+ os.makedirs(os.path.join("./onnx", tmp_dir), exist_ok=True)
16
+ with open(os.path.join("./onnx", tmp_dir, "model.onnx"), "wb") as f:
17
+ f.write(b"")
18
+ pipe.save_pretrained("./onnx")
19
+
20
+
21
+ if __name__ == "__main__":
22
+ download_save()
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/inference.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionOnnxPipeline, StableDiffusionPipeline
2
+ import os
3
+ import json
4
+
5
+ root = os.getcwd()
6
+ last_dir = os.path.split(root)[-1]
7
+ if last_dir == "stable-diffusion-streamlit":
8
+ model_dir = os.path.join(root, "pages/model/onnx")
9
+ result_dir = os.path.join(root, "pages/model/result")
10
+ elif last_dir == "pages":
11
+ model_dir = os.path.join(root, "model/onnx")
12
+ result_dir = os.path.join(root, "model/result")
13
+ elif last_dir == "app":
14
+ model_dir = os.path.join(root, "pages/model/onnx")
15
+ result_dir = os.path.join(root, "pages/model/result")
16
+ else:
17
+ model_dir = os.path.join(root, "onnx")
18
+ result_dir = os.path.join(root, "result")
19
+
20
+ global quant_pipe
21
+
22
+ quant_pipe = StableDiffusionOnnxPipeline.from_pretrained(
23
+ model_dir, provider="CPUExecutionProvider", local_files_only=True
24
+ )
25
+ # quant_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", local_files_only=True)
26
+
27
+
28
+ def inference(uid, **args):
29
+ image = quant_pipe(**args)["sample"][0]
30
+ target = os.path.join(result_dir, uid)
31
+ os.makedirs(target, exist_ok=True)
32
+ image.save(os.path.join(target, "image.png"))
33
+ with open(os.path.join(target, "config.json"), "w") as f:
34
+ json.dump(args, f, indent=4, ensure_ascii=False)
35
+
36
+
37
+ if __name__ == "__main__":
38
+ from pympler.asizeof import asizeof
39
+
40
+ print(asizeof(quant_pipe))
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8613d46ab19c61e528f7f9bb37932d55ca6d73f59ff9349e5aaa3e97fc5e0700
3
+ size 17745692
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d12bc8352e8bb54e7a3225883ca80e3aac9201ad21fe2dcaa142c6337d35269e
3
+ size 860852480
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.ort ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d9c740b06118205354d251d123597c59c2550bd1870197bd7c393c4aa905505
3
+ size 874459960
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.with_runtime_opt.ort ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7762dc164ef1b7d50a51b4efff243c650e2a87cfc8fddb00ebc6be1c2056bbe0
3
+ size 874913120
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/required_operators.config ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generated from model/s:
2
+ # - /content/Stable-Diffusion-ONNX-FP16/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.ort
3
+ ai.onnx;1;LayerNormalization
4
+ ai.onnx;6;InstanceNormalization
5
+ ai.onnx;7;Cos,Sin
6
+ ai.onnx;9;ConstantOfShape,Where
7
+ ai.onnx;10;ConvInteger
8
+ ai.onnx;11;DynamicQuantizeLinear,Range
9
+ ai.onnx;13;Cast,Concat,Equal,Expand,Gather,MatMul,Resize,ScatterND,Slice,Softmax,Transpose,Unsqueeze
10
+ ai.onnx;14;Add,Div,Mul,Reshape
11
+ ai.onnx;15;Shape
12
+ com.microsoft;1;DynamicQuantizeMatMul,FusedMatMul,Gelu,MatMulIntegerToFloat,QuickGelu
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/required_operators.with_runtime_opt.config ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generated from model/s:
2
+ # - /content/Stable-Diffusion-ONNX-FP16/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/model.with_runtime_opt.ort
3
+ # - /content/Stable-Diffusion-ONNX-FP16/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/onnx/tmpmaqb65r3.without_runtime_opt/model.ort
4
+ ai.onnx;6;InstanceNormalization
5
+ ai.onnx;7;Cos,Sin
6
+ ai.onnx;9;ConstantOfShape,Where
7
+ ai.onnx;10;ConvInteger,MatMulInteger
8
+ ai.onnx;11;DynamicQuantizeLinear,Range
9
+ ai.onnx;13;Cast,Concat,Equal,Erf,Expand,Gather,MatMul,ReduceMean,Resize,ScatterND,Sigmoid,Slice,Softmax,Sqrt,Transpose,Unsqueeze
10
+ ai.onnx;14;Add,Div,Mul,Reshape,Sub
11
+ ai.onnx;15;Pow,Shape
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/prepare.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy_pb import copy_weights
2
+ from download_onnx import download_save
3
+ from quantization import quant
4
+ import shutil
5
+
6
+ if __name__ == "__main__":
7
+ shutil.rmtree("./onnx", ignore_errors=True)
8
+ download_save()
9
+ copy_weights()
10
+ quant()
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/quantization.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from onnxruntime.quantization import quantize_dynamic, QuantType
3
+
4
+
5
+ def quant():
6
+ for root, dirs, filenames in os.walk("./onnx"):
7
+ if "model.onnx" in filenames:
8
+ if "weights.pb" in filenames:
9
+ external_data = True
10
+ else:
11
+ external_data = False
12
+ quantize_dynamic(
13
+ model_input=os.path.join(root, "model.onnx"),
14
+ model_output=os.path.join(root, "model.onnx"), # 量化后直接覆盖原onnx文件
15
+ per_channel=True,
16
+ reduce_range=True,
17
+ weight_type=QuantType.QUInt8,
18
+ optimize_model=True,
19
+ use_external_data_format=external_data,
20
+ )
21
+ print("Quantized model saved at: ", os.path.join(root, "model.onnx"))
22
+ if "weights.pb" in filenames:
23
+ os.remove(os.path.join(root, "weights.pb"))
24
+ print("Removed weights.pb")
25
+
26
+
27
+ if __name__ == "__main__":
28
+ quant()
patchedstabledifftoonnx/stable-diffusion-streamlit/src/stable-diffusion-streamlit/pages/model/thread.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ import copy
3
+ from diffusers import StableDiffusionOnnxPipeline, StableDiffusionPipeline
4
+
5
+
6
+ class PipelineThread(threading.Thread):
7
+ def __init__(self, func, args=()):
8
+ super(PipelineThread, self).__init__()
9
+ self.func = StableDiffusionOnnxPipeline(
10
+ func.vae_decoder,
11
+ func.text_encoder,
12
+ func.tokenizer,
13
+ func.unet,
14
+ copy.deepcopy(func.scheduler),
15
+ func.safety_checker,
16
+ func.feature_extractor,
17
+ )
18
+ self.args = args
19
+
20
+ def run(self):
21
+ self.result = self.func(*self.args)
22
+
23
+ def get_result(self):
24
+ try:
25
+ return self.result
26
+ except Exception:
27
+ return None