|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstdlib> |
|
#include <iomanip> |
|
#include <ios> |
|
#include <limits> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <fp16/fp16.h> |
|
|
|
#include <xnnpack/aligned-allocator.h> |
|
#include <xnnpack/common.h> |
|
#include <xnnpack/isa-checks.h> |
|
#include <xnnpack/math.h> |
|
#include <xnnpack/math-stubs.h> |
|
|
|
|
|
constexpr int kBlockSize = 1024; |
|
|
|
#if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
|
TEST(CVT__SSE2, positive_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, negative_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, positive_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, negative_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, positive_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, negative_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, positive_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE2, negative_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE2, positive_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, negative_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, positive_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE2, negative_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE2, positive_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE2, negative_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
|
TEST(CVT__SSE41, positive_normal) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, negative_normal) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, positive_subnormal) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, negative_subnormal) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, positive_underflow) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, negative_underflow) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, positive_zero) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE41, negative_zero) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE41, positive_overflow) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, negative_overflow) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, positive_infinity) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE41, negative_infinity) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SSE41, positive_nan) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SSE41, negative_nan) { |
|
TEST_REQUIRES_X86_SSE41; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
|
TEST(CVT__F16C, positive_normal) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, negative_normal) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, positive_subnormal) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, negative_subnormal) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, positive_underflow) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, negative_underflow) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, positive_zero) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__F16C, negative_zero) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__F16C, positive_overflow) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, negative_overflow) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, positive_infinity) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__F16C, negative_infinity) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__F16C, positive_nan) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__F16C, negative_nan) { |
|
TEST_REQUIRES_X86_F16C; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
|
TEST(CVT__NEON, positive_normal) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, negative_normal) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, positive_subnormal) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, negative_subnormal) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, positive_underflow) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, negative_underflow) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, positive_zero) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEON, negative_zero) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEON, positive_overflow) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, negative_overflow) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, positive_infinity) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEON, negative_infinity) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEON, positive_nan) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEON, negative_nan) { |
|
TEST_REQUIRES_ARM_NEON; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
|
TEST(CVT__NEONFP16, positive_normal) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_normal) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_subnormal) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_subnormal) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_underflow) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_underflow) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_zero) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_zero) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_overflow) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_overflow) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_infinity) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_infinity) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__NEONFP16, positive_nan) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__NEONFP16, negative_nan) { |
|
TEST_REQUIRES_ARM_NEON_FP16; |
|
|
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD |
|
TEST(CVT__WASMSIMD, positive_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__WASMSIMD, positive_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__WASMSIMD, negative_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, positive_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_BITCAST, negative_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_normal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_subnormal) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_underflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +0.0f); |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x0000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_zero) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -0.0f); |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x8000); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_overflow) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(n + i); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[i]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0x7C00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_infinity) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity()); |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
const uint16_t reference_output = UINT16_C(0xFC00); |
|
ASSERT_EQ(reference_output, outputs[0]) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
|
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0]; |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, positive_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0x7C00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
ASSERT_LT(outputs[i], UINT16_C(0x8000)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|
|
TEST(CVT__SCALAR_FABSF, negative_nan) { |
|
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize); |
|
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF))); |
|
} |
|
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data()); |
|
for (uint32_t i = 0; i < kBlockSize; i++) { |
|
ASSERT_GT(outputs[i], UINT16_C(0xFC00)) |
|
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
|
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i]; |
|
} |
|
} |
|
} |
|
|