|
|
|
|
|
|
|
|
|
|
|
$assert CHANNEL_TILE % 8 == 0 |
|
$assert KERNEL_TILE >= 2 |
|
$assert ACCUMULATORS >= 1 |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/dwconv.h> |
|
|
|
|
|
$ISA = {0: "avx", 3: "fma3"}[FMA] |
|
void xnn_f32_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__${ISA}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
|
size_t channels, |
|
size_t output_width, |
|
const float** input, |
|
const float* weights, |
|
float* output, |
|
intptr_t input_stride, |
|
size_t output_increment, |
|
size_t input_offset, |
|
const float* zero, |
|
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
|
{ |
|
assert(channels != 0); |
|
assert(output_width != 0); |
|
|
|
const __m256 vmin = _mm256_load_ps(params->avx.min); |
|
const __m256 vmax = _mm256_load_ps(params->avx.max); |
|
do { |
|
$for K in range(KERNEL_TILE): |
|
const float* i${K} = input[${K}]; |
|
assert(i${K} != NULL); |
|
if XNN_UNPREDICTABLE(i${K} != zero) { |
|
i${K} = (const float*) ((uintptr_t) i${K} + input_offset); |
|
} |
|
input = (const float**) ((uintptr_t) input + input_stride); |
|
|
|
size_t c = channels; |
|
const float* w = weights; |
|
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
|
__m256 vacc${ABC[0:8]}p0 = _mm256_load_ps(w); |
|
$for C in range(8, CHANNEL_TILE, 8): |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(w + ${C}); |
|
|
|
$for K in range(KERNEL_TILE): |
|
|
|
const __m256 vi${K}x${ABC[0:8]} = _mm256_loadu_ps(i${K}); |
|
$for C in range(8, CHANNEL_TILE, 8): |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K} + ${C}); |
|
i${K} += ${CHANNEL_TILE}; |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE + C}); |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}); |
|
$elif FMA == 3: |
|
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}); |
|
$else: |
|
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_add_ps(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]})); |
|
|
|
w += ${(KERNEL_TILE + 1) * CHANNEL_TILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]}p${A} = _mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}); |
|
$ACC_SLICE *= 2 |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
__m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vmin, vacc${ABC[C:C+8]}p0); |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]} = _mm256_min_ps(vmax, vacc${ABC[C:C+8]}); |
|
|
|
_mm256_storeu_ps(output, vacc${ABC[0:8]}); |
|
$for C in range(8, CHANNEL_TILE, 8): |
|
_mm256_storeu_ps(output + ${C}, vacc${ABC[C:C+8]}); |
|
output += ${CHANNEL_TILE}; |
|
} |
|
$if CHANNEL_TILE > 8: |
|
for (; c >= 8; c -= 8) { |
|
__m256 vacc01234567p0 = _mm256_load_ps(w); |
|
$for K in range(KERNEL_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_loadu_ps(i${K}); |
|
i${K} += 8; |
|
|
|
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE}); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567); |
|
$elif FMA == 3: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567)); |
|
|
|
w += 8; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}); |
|
$ACC_SLICE *= 2 |
|
|
|
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0); |
|
vacc01234567 = _mm256_min_ps(vmax, vacc01234567); |
|
|
|
_mm256_storeu_ps(output, vacc01234567); |
|
output += 8; |
|
} |
|
if XNN_UNLIKELY(c != 0) { |
|
assert(c >= 1); |
|
assert(c <= 7); |
|
const __m256i vmask = _mm256_loadu_si256((const __m256i*) ¶ms->avx.mask_table[7 - c]); |
|
|
|
__m256 vacc01234567p0 = _mm256_load_ps(w); |
|
$for K in range(KERNEL_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_maskload_ps(i${K}, vmask); |
|
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE}); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567); |
|
$elif FMA == 3: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567)); |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}); |
|
$ACC_SLICE *= 2 |
|
|
|
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0); |
|
vacc01234567 = _mm256_min_ps(vmax, vacc01234567); |
|
|
|
__m128 vacc0123 = _mm256_castps256_ps128(vacc01234567); |
|
if (c & 4) { |
|
_mm_storeu_ps(output, vacc0123); |
|
vacc0123 = _mm256_extractf128_ps(vacc01234567, 1); |
|
output += 4; |
|
} |
|
if (c & 2) { |
|
_mm_storel_pi((__m64*) output, vacc0123); |
|
vacc0123 = _mm_movehl_ps(vacc0123, vacc0123); |
|
output += 2; |
|
} |
|
if (c & 1) { |
|
_mm_store_ss(output, vacc0123); |
|
output += 1; |
|
} |
|
} |
|
|
|
output = (float*) ((uintptr_t) output + output_increment); |
|
} while (--output_width != 0); |
|
} |
|
|