test / src /f32-gemm /avx-shuffle4.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
8.59 kB
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["F32", "QC4", "QC8"]
$assert NR % 8 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
$if DATATYPE in ["QC8", "QC4"]:
#include <smmintrin.h>
#include <xnnpack/gemm.h>
$if DATATYPE in ["QC8", "QC4"]:
$ISA = "avx2"
$else:
$ISA = {0: "avx", 3: "fma3"}[FMA]
$DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE]
void xnn_${DATATYPE_SPEC}_gemm${"inc" if INC else ""}_minmax_ukernel_${MR}x${NR}s4__${ISA}_broadcast(
size_t mr,
size_t nc,
size_t kc,
const float* restrict a,
size_t a_stride,
$if DATATYPE == "F32":
const float* restrict w,
$else:
const void* restrict w,
float* restrict c,
size_t cm_stride,
size_t cn_stride,
$if INC:
const float* restrict acc,
$if DATATYPE == "QC4":
const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
$else:
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
$if INC:
assert(acc != NULL);
const float* a0 = a;
float* c0 = c;
$for M in range(1, MR):
const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride);
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$if DATATYPE == "QC4":
const __m128i vminus_kernel_zero_point = _mm_load_si128((const __m128i *) params->sse.minus_kernel_zero_point);
const __m128i vmask = _mm_load_si128((const __m128i *) params->sse.mask);
do {
$if INC:
$for M in range(MR):
$for N in range(0, NR, 8):
__m256 vacc${M}x${ABC[N:N+8]} = _mm256_load_ps(acc + ${M*NR+N});
acc += ${MR*NR};
$else:
$for N in range(0, NR, 8):
$if DATATYPE == "F32":
__m256 vacc0x${ABC[N:N+8]} = _mm256_load_ps(w + ${N});
$else:
__m256 vacc0x${ABC[N:N+8]} = _mm256_loadu_ps((const float*) w + ${N});
$for M in range(1, MR):
$for N in range(0, NR, 8):
__m256 vacc${M}x${ABC[N:N+8]} = vacc0x${ABC[N:N+8]};
$if DATATYPE == "F32":
w += ${NR};
$else:
w = (const float*) w + ${NR};
size_t k = kc;
while (k >= 4 * sizeof(float)) {
$for M in range(MR):
__m256 va${M} = _mm256_broadcast_ps((const __m128*) a${M});
a${M} += 4;
$for L in range(4):
$if DATATYPE == "F32":
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_load_ps(w + ${L * NR + N});
$else:
$for N in range(0, NR, 8):
const __m256i vbi${ABC[N:N+8]}c${L} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const void*) ((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_cvtepi32_ps(vbi${ABC[N:N+8]}c${L});
$for N in range(0, NR, 8):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+8]} = _mm256_fmadd_ps(va${M}, vb${ABC[N:N+8]}c${L}, vacc${M}x${ABC[N:N+8]});
$else:
vacc${M}x${ABC[N:N+8]} = _mm256_add_ps(vacc${M}x${ABC[N:N+8]}, _mm256_mul_ps(va${M}, vb${ABC[N:N+8]}c${L}));
$if L + 1 != 4:
$for M in range(MR):
va${M} = _mm256_permute_ps(va${M}, _MM_SHUFFLE(0, 3, 2, 1));
$if DATATYPE == "F32":
w += ${NR * 4};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 4 // 2};
$else:
w = (const int8_t*) w + ${NR * 4};
k -= 4 * sizeof(float);
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
__m256 va${M} = _mm256_broadcast_ps((const __m128*) a${M});
a${M} = (const float*) ((uintptr_t) a${M} + k);
const __m256 vzero = _mm256_setzero_ps();
$for L in range(4):
$if DATATYPE == "F32":
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_load_ps(w + ${L * NR + N});
$else:
$for N in range(0, NR, 8):
const __m256i vbi${ABC[N:N+8]}c${L} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const void*) ((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_cvtepi32_ps(vbi${ABC[N:N+8]}c${L});
$for N in range(0, NR, 8):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+8]} = _mm256_fmadd_ps(_mm256_and_ps(va${M}, _mm256_cmp_ps(vb${ABC[N:N+8]}c${L}, vzero, _CMP_NEQ_OQ)), vb${ABC[N:N+8]}c${L}, vacc${M}x${ABC[N:N+8]});
$else:
vacc${M}x${ABC[N:N+8]} = _mm256_add_ps(vacc${M}x${ABC[N:N+8]}, _mm256_mul_ps(_mm256_and_ps(va${M}, _mm256_cmp_ps(vb${ABC[N:N+8]}c${L}, vzero, _CMP_NEQ_OQ)), vb${ABC[N:N+8]}c${L}));
$if L + 1 != 4:
$for M in range(MR):
va${M} = _mm256_permute_ps(va${M}, _MM_SHUFFLE(0, 3, 2, 1));
$if DATATYPE == "F32":
w += ${NR * 4};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 4 // 2};
$else:
w = (const int8_t*) w + ${NR * 4};
}
$if DATATYPE in ["QC8", "QC4"]:
$for N in range(0, NR, 8):
const __m256 vscale${ABC[N:N+8]} = _mm256_loadu_ps((const float*) w + ${N});
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_mul_ps(vacc${M}x${ABC[N:N+8]}, vscale${ABC[N:N+8]});
w = (const float*) w + ${NR};
const __m256 vmin = _mm256_load_ps(params->avx.min);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_max_ps(vmin, vacc${M}x${ABC[N:N+8]});
const __m256 vmax = _mm256_load_ps(params->avx.max);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_min_ps(vmax, vacc${M}x${ABC[N:N+8]});
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
_mm256_storeu_ps(c${M}, vacc${M}x${ABC[0:8]});
$for N in range(8, NR, 8):
_mm256_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+8]});
c${M} = (float*) ((uintptr_t) c${M} + cn_stride);
$for M in reversed(range(MR)):
a${M} = (const float*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 3:
$for M in reversed(range(MR)):
_mm256_storeu_ps(c${M}, vacc${M}x${ABC[0:8]});
$for N in range(8, 1 << LOG2N, 8):
_mm256_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+8]});
$for M in reversed(range(MR)):
$for N in range(0, NR - (1 << LOG2N), 8):
vacc${M}x${ABC[N:N+8]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+8]};
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 2:
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm256_extractf128_ps(vacc${M}x${ABC[0:8]}, 1);
$for M in reversed(range(MR)):
c${M} += 4;
$elif LOG2N == 1:
$for M in reversed(range(MR)):
_mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
c${M} += 2;
$elif LOG2N == 0:
$for M in reversed(range(MR)):
_mm_store_ss(c${M}, vacc${M}x${ABC[0:4]});
}
$if LOG2N == 3:
$for M in reversed(range(MR)):
__m128 vacc${M}x${ABC[0:4]} = _mm256_castps256_ps128(vacc${M}x${ABC[0:8]});
nc = 0;
}
} while (nc != 0);
}