test / src /f32-dwconv /multipass-avx.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
19.2 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$CHANNEL_SUBTILE = 8
$assert CHANNEL_TILE % CHANNEL_SUBTILE == 0
$CHANNEL_ROUND = 4
$assert MIDDLE_PASS_TILE <= LAST_PASS_TILE
$assert FIRST_PASS_TILE >= 1
$assert MIDDLE_PASS_TILE >= 1
$assert LAST_PASS_TILE >= 1
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
$ISA = {0: "avx", 3: "fma3"}[FMA]
void xnn_f32_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__${ISA}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const float** input,
const float* weights,
float* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const float* zero,
size_t kernel_size,
float* buffer,
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
assert(kernel_size > ${FIRST_PASS_TILE});
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
do {
const float* w = weights;
// First pass to process ${FIRST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(FIRST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${FIRST_PASS_TILE};
// Process c channels and write to buffer.
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(w);
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(w + ${C});
$for K in range(FIRST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K});
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$elif FMA == 3:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_add_ps(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm256_store_ps(b, vacc${ABC[C:C+8]}p0);
$else:
_mm256_store_ps(b + ${C}, vacc${ABC[C:C+8]}p0);
b += ${CHANNEL_TILE};
}
for (; c >= ${CHANNEL_SUBTILE}; c -= ${CHANNEL_SUBTILE}) {
__m256 vacc01234567p0 = _mm256_load_ps(w);
$for K in range(FIRST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_loadu_ps(i${K});
i${K} += ${CHANNEL_SUBTILE};
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm256_store_ps(b, vacc01234567p0);
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
const __m256i vmask = _mm256_loadu_si256((const __m256i*) &params->avx.mask_table[7 - c]);
__m256 vacc01234567p0 = _mm256_load_ps(w);
$for K in range(FIRST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_maskload_ps(i${K}, vmask);
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm256_store_ps(b, vacc01234567p0);
}
}
// Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration.
for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) {
float* b = buffer;
$for K in range(MIDDLE_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${MIDDLE_PASS_TILE};
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(b);
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(b + ${C});
$for K in range(MIDDLE_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K});
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
$if K == 0 and C == 0:
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w);
$else:
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$elif FMA == 3:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_add_ps(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}));
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm256_store_ps(b, vacc${ABC[C:C+8]}p0);
$else:
_mm256_store_ps(b + ${C}, vacc${ABC[C:C+8]}p0);
b += ${CHANNEL_TILE};
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_load_ps(b);
$for K in range(MIDDLE_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_loadu_ps(i${K});
i${K} += ${CHANNEL_SUBTILE};
$if K == 0:
const __m256 vk${K}x01234567 = _mm256_load_ps(w);
$else:
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${K * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
w += ${MIDDLE_PASS_TILE * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm256_store_ps(b, vacc01234567p0);
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
const __m256i vmask = _mm256_loadu_si256((const __m256i*) &params->avx.mask_table[7 - c]);
__m256 vacc01234567p0 = _mm256_load_ps(b);
$for K in range(MIDDLE_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_maskload_ps(i${K}, vmask);
$if K == 0:
const __m256 vk${K}x01234567 = _mm256_load_ps(w);
$else:
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
w += ${(MIDDLE_PASS_TILE) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm256_store_ps(b, vacc01234567p0);
}
}
// Last pass to process up to ${LAST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(0, LAST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
size_t c = channels;
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(b);
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(b + ${C});
b += ${CHANNEL_TILE};
$for K in range(LAST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K});
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
$if K == 0 and C == 0:
__m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w);
$else:
__m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$elif FMA == 3:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_add_ps(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}));
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
__m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vmin, vacc${ABC[C:C+8]}p0);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_min_ps(vmax, vacc${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm256_storeu_ps(output, vacc${ABC[C:C+8]});
$else:
_mm256_storeu_ps(output + ${C}, vacc${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_load_ps(b);
b += 8;
$for K in range(LAST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_loadu_ps(i${K});
i${K} += 8;
$if K == 0:
__m256 vk${K}x01234567 = _mm256_load_ps(w);
$else:
__m256 vk${K}x01234567 = _mm256_load_ps(w + ${K * 8});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
$if CHANNEL_TILE > 8:
w += ${LAST_PASS_TILE * 8};
$else:
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0);
vacc01234567 = _mm256_min_ps(vmax, vacc01234567);
_mm256_storeu_ps(output, vacc01234567);
output += 8;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
__m256 vacc01234567p0 = _mm256_load_ps(b);
const __m256i vmask = _mm256_loadu_si256((const __m256i*) &params->avx.mask_table[7 - c]);
$for K in range(LAST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_maskload_ps(i${K}, vmask);
$if K == 0:
__m256 vk${K}x01234567 = _mm256_load_ps(w);
$else:
__m256 vk${K}x01234567 = _mm256_load_ps(w + ${K * 8});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0);
vacc01234567 = _mm256_min_ps(vmax, vacc01234567);
__m128 vacc0123 = _mm256_castps256_ps128(vacc01234567);
if (c & 4) {
_mm_storeu_ps(output, vacc0123);
vacc0123 = _mm256_extractf128_ps(vacc01234567, 1);
output += 4;
}
if (c & 2) {
_mm_storel_pi((__m64*) output, vacc0123);
vacc0123 = _mm_movehl_ps(vacc0123, vacc0123);
output += 2;
}
if (c & 1) {
_mm_store_ss(output, vacc0123);
output += 1;
}
}
}
input = (const float**) ((uintptr_t) input + input_stride);
output = (float*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}