|
|
|
|
|
|
|
|
|
|
|
$assert PIXEL_TILE >= 1 |
|
$assert PIXEL_TILE % 4 == 0 |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
#include <assert.h> |
|
|
|
#include <arm_neon.h> |
|
|
|
#include <xnnpack/ibilinear.h> |
|
|
|
|
|
void xnn_f16_ibilinear_chw_ukernel__neonfp16arith_p${PIXEL_TILE}( |
|
size_t output_pixels, |
|
size_t channels, |
|
const void** restrict input, |
|
size_t input_offset, |
|
const void* restrict weights, |
|
void* restrict output, |
|
size_t input_increment) XNN_OOB_READS |
|
{ |
|
assert(output_pixels != 0); |
|
assert(channels != 0); |
|
assert(input_increment % sizeof(uint16_t) == 0); |
|
|
|
uint16_t* o = (uint16_t*) output; |
|
do { |
|
const uint16_t** i = (const uint16_t**)input; |
|
const uint16_t* w = weights; |
|
size_t p = output_pixels; |
|
|
|
$if PIXEL_TILE > 4: |
|
for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { |
|
$for P in range(PIXEL_TILE): |
|
const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); |
|
const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
|
i += 2 * ${PIXEL_TILE}; |
|
|
|
$for P in range(0, PIXEL_TILE, 4): |
|
const uint16x4x2_t vw${ABC[P:P+4]} = vld2_u16(w); w += 8; |
|
|
|
$for P in range(0, PIXEL_TILE, 4): |
|
float16x8_t vtltr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) itl${ABC[P]})); |
|
float16x8_t vblbr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) ibl${ABC[P]})); |
|
|
|
$for L in range(1, 4): |
|
$for P in range(0, PIXEL_TILE, 4): |
|
vtltr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P+L]}, vreinterpretq_u32_f16(vtltr${ABC[P:P+4]}), ${L})); |
|
vblbr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P+L]}, vreinterpretq_u32_f16(vblbr${ABC[P:P+4]}), ${L})); |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8_t valphah${ABC[P:P+8]} = vreinterpretq_f16_u16(vcombine_u16(vw${ABC[P:P+4]}.val[0], vw${ABC[P+4:P+8]}.val[0])); |
|
const float16x8_t valphav${ABC[P:P+8]} = vreinterpretq_f16_u16(vcombine_u16(vw${ABC[P:P+4]}.val[1], vw${ABC[P+4:P+8]}.val[1])); |
|
|
|
$for P in range(0, PIXEL_TILE, 4): |
|
const float16x8_t vldrd${ABC[P:P+4]} = vsubq_f16(vblbr${ABC[P:P+4]}, vtltr${ABC[P:P+4]}); |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8x2_t vld_t${ABC[P:P+8]} = vuzpq_f16(vldrd${ABC[P:P+4]}, vldrd${ABC[P+4:P+8]}); |
|
const float16x8_t vld${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[0]; |
|
const float16x8_t vrd${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[1]; |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8x2_t vtl_t${ABC[P:P+8]} = vuzpq_f16(vtltr${ABC[P:P+4]}, vtltr${ABC[P+4:P+8]}); |
|
const float16x8_t vtl${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[0]; |
|
const float16x8_t vtr${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[1]; |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8_t vl${ABC[P:P+8]} = vfmaq_f16(vtl${ABC[P:P+8]}, vld${ABC[P:P+8]}, valphav${ABC[P:P+8]}); |
|
const float16x8_t vr${ABC[P:P+8]} = vfmaq_f16(vtr${ABC[P:P+8]}, vrd${ABC[P:P+8]}, valphav${ABC[P:P+8]}); |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8_t vd${ABC[P:P+8]} = vsubq_f16(vr${ABC[P:P+8]}, vl${ABC[P:P+8]}); |
|
$for P in range(0, PIXEL_TILE, 8): |
|
const float16x8_t vo${ABC[P:P+8]} = vfmaq_f16(vl${ABC[P:P+8]}, vd${ABC[P:P+8]}, valphah${ABC[P:P+8]}); |
|
|
|
$for P in range(0, PIXEL_TILE, 8): |
|
vst1q_u16(o, vreinterpretq_u16_f16(vo${ABC[P:P+8]})); o += 8; |
|
} |
|
for (; p >= 4; p -= 4) { |
|
$for P in range(4): |
|
const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); |
|
const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
|
i += 8; |
|
|
|
const uint16x4x2_t vw = vld2_u16(w); w += 8; |
|
|
|
float16x8_t vtltr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) itl${ABC[0]})); |
|
float16x8_t vblbr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) ibl${ABC[0]})); |
|
$for P in range(1, 4): |
|
vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P]}, vreinterpretq_u32_f16(vtltr), ${P})); |
|
vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P]}, vreinterpretq_u32_f16(vblbr), ${P})); |
|
|
|
const float16x4_t valphah = vreinterpret_f16_u16(vw.val[0]); |
|
const float16x4_t valphav = vreinterpret_f16_u16(vw.val[1]); |
|
|
|
const float16x8_t vldrd = vsubq_f16(vblbr, vtltr); |
|
|
|
const float16x4x2_t vld_t = vuzp_f16(vget_low_f16(vldrd), vget_high_f16(vldrd)); |
|
const float16x4_t vld = vld_t.val[0]; |
|
const float16x4_t vrd = vld_t.val[1]; |
|
|
|
const float16x4x2_t vtl_t = vuzp_f16(vget_low_f16(vtltr), vget_high_f16(vtltr)); |
|
const float16x4_t vtl = vtl_t.val[0]; |
|
const float16x4_t vtr = vtl_t.val[1]; |
|
|
|
const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
|
const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
|
|
|
const float16x4_t vd = vsub_f16(vr, vl); |
|
const float16x4_t vo = vfma_f16(vl, vd, valphah); |
|
|
|
vst1_u16(o, vreinterpret_u16_f16(vo)); o += 4; |
|
} |
|
if XNN_UNLIKELY(p != 0) { |
|
if (p & 2) { |
|
$for P in range(2): |
|
const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); |
|
const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); |
|
i += 4; |
|
|
|
const float16x4_t vw = vreinterpret_f16_u16(vld1_u16(w)); w += 4; |
|
|
|
const float16x4x2_t vwhv = vuzp_f16(vw, vw); |
|
const float16x4_t valphah = vwhv.val[0]; |
|
const float16x4_t valphav = vwhv.val[1]; |
|
|
|
float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl${ABC[0]})); |
|
float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl${ABC[0]})); |
|
|
|
vtltr = vreinterpret_f16_u32(vld1_lane_u32((const void*) itl${ABC[1]}, vreinterpret_u32_f16(vtltr), 1)); |
|
vblbr = vreinterpret_f16_u32(vld1_lane_u32((const void*) ibl${ABC[1]}, vreinterpret_u32_f16(vblbr), 1)); |
|
|
|
const float16x4_t vldrd = vsub_f16(vblbr, vtltr); |
|
|
|
const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); |
|
const float16x4_t vld = vld_t.val[0]; |
|
const float16x4_t vrd = vld_t.val[1]; |
|
|
|
const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); |
|
const float16x4_t vtl = vtl_t.val[0]; |
|
const float16x4_t vtr = vtl_t.val[1]; |
|
|
|
const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
|
const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
|
|
|
const float16x4_t vd = vsub_f16(vr, vl); |
|
const float16x4_t vo = vfma_f16(vl, vd, valphah); |
|
|
|
vst1_lane_u32((void*) o, vreinterpret_u32_f16(vo), 0); o += 2; |
|
} |
|
if (p & 1) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const uint16_t* itl = (const uint16_t*) ((uintptr_t) i[0] + input_offset); |
|
const uint16_t* ibl = (const uint16_t*) ((uintptr_t) i[1] + input_offset); |
|
i += 2; |
|
|
|
const float16x4_t vw = vreinterpret_f16_u32(vld1_dup_u32((const void*) w)); w += 2; |
|
|
|
const float16x4x2_t vwhv = vuzp_f16(vw, vw); |
|
const float16x4_t valphah = vwhv.val[0]; |
|
const float16x4_t valphav = vwhv.val[1]; |
|
|
|
const float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl)); |
|
const float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl)); |
|
|
|
const float16x4_t vldrd = vsub_f16(vblbr, vtltr); |
|
|
|
const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); |
|
const float16x4_t vld = vld_t.val[0]; |
|
const float16x4_t vrd = vld_t.val[1]; |
|
|
|
const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); |
|
const float16x4_t vtl = vtl_t.val[0]; |
|
const float16x4_t vtr = vtl_t.val[1]; |
|
|
|
const float16x4_t vl = vfma_f16(vtl, vld, valphav); |
|
const float16x4_t vr = vfma_f16(vtr, vrd, valphav); |
|
|
|
const float16x4_t vd = vsub_f16(vr, vl); |
|
const float16x4_t vo = vfma_f16(vl, vd, valphah); |
|
|
|
vst1_lane_u16(o, vreinterpret_u16_f16(vo), 0); o += 1; |
|
} |
|
} |
|
|
|
input_offset += input_increment; |
|
} while (--channels != 0); |
|
} |
|
|