test / src /f16-dwconv /gen /f16-dwconv-4p16c-minmax-fma3-acc2.c
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
9.74 kB
// Auto-generated file. Do not edit!
// Template: src/f16-dwconv/unipass-fma3.c.in
// Generator: tools/xngen
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/intrinsics-polyfill.h>
void xnn_f16_dwconv_minmax_ukernel_4p16c__fma3_acc2(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
const __m256 vmax = _mm256_load_ps(params->avx.max);
const __m256 vmin = _mm256_load_ps(params->avx.min);
uint16_t* o = (uint16_t*) output;
do {
const uint16_t* i0 = input[0];
assert(i0 != NULL);
if XNN_UNPREDICTABLE(i0 != zero) {
i0 = (const uint16_t*) ((uintptr_t) i0 + input_offset);
}
const uint16_t* i1 = input[1];
assert(i1 != NULL);
if XNN_UNPREDICTABLE(i1 != zero) {
i1 = (const uint16_t*) ((uintptr_t) i1 + input_offset);
}
const uint16_t* i2 = input[2];
assert(i2 != NULL);
if XNN_UNPREDICTABLE(i2 != zero) {
i2 = (const uint16_t*) ((uintptr_t) i2 + input_offset);
}
const uint16_t* i3 = input[3];
assert(i3 != NULL);
if XNN_UNPREDICTABLE(i3 != zero) {
i3 = (const uint16_t*) ((uintptr_t) i3 + input_offset);
}
input = (const void**) ((uintptr_t) input + input_stride);
size_t c = channels;
const uint16_t* w = weights;
for (; c >= 16; c -= 16) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
__m256 vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 8)));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
const __m256 vi0x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i0 + 8)));
i0 += 16;
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 16)));
const __m256 vk0x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 24)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x89ABCDEF, vk0x89ABCDEF, vacc89ABCDEFp0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
const __m256 vi1x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i1 + 8)));
i1 += 16;
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 32)));
const __m256 vk1x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 40)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc89ABCDEFp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x89ABCDEF, vk1x89ABCDEF), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
const __m256 vi2x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + 8)));
i2 += 16;
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 48)));
const __m256 vk2x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 56)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x89ABCDEF, vk2x89ABCDEF, vacc89ABCDEFp0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
const __m256 vi3x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i3 + 8)));
i3 += 16;
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 64)));
const __m256 vk3x89ABCDEF = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 72)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x89ABCDEF, vk3x89ABCDEF, vacc89ABCDEFp1), _MM_FROUND_TO_NEAREST_INT));
w += 80;
// Add up all accumulators to vacc0123456789ABCDEFp0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
vacc89ABCDEFp0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc89ABCDEFp0, vacc89ABCDEFp1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
__m256 vacc89ABCDEF = _mm256_max_ps(vacc89ABCDEFp0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
vacc89ABCDEF = _mm256_min_ps(vacc89ABCDEF, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 8), _mm256_cvtps_ph(vacc89ABCDEF, _MM_FROUND_TO_NEAREST_INT));
o += 16;
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
i0 += 8;
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 16)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
i1 += 8;
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 32)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
i2 += 8;
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 48)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
i3 += 8;
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 64)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
w += 8;
// Add up all accumulators to vacc01234567p0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
o += 8;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= 7);
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
const __m256 vi0x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0));
const __m256 vk0x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 16)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi0x01234567, vk0x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi1x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1));
const __m256 vk1x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 32)));
__m256 vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi1x01234567, vk1x01234567), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi2x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2));
const __m256 vk2x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 48)));
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi2x01234567, vk2x01234567, vacc01234567p0), _MM_FROUND_TO_NEAREST_INT));
const __m256 vi3x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3));
const __m256 vk3x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + 64)));
vacc01234567p1 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi3x01234567, vk3x01234567, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
// Add up all accumulators to vacc01234567p0
vacc01234567p0 = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p0, vacc01234567p1), _MM_FROUND_TO_NEAREST_INT));
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
__m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT);
if (c & 4) {
_mm_storel_epi64((__m128i*) o, vh01234567);
vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567);
o += 4;
}
if (c & 2) {
_mm_storeu_si32(o, vh01234567);
vh01234567 = _mm_srli_epi64(vh01234567, 32);
o += 2;
}
if (c & 1) {
*o = (uint16_t) _mm_extract_epi16(vh01234567, 0);
o += 1;
}
}
o = (uint16_t*) ((uintptr_t) o + output_increment);
} while (--output_width != 0);
}