|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import codecs |
|
import os |
|
import re |
|
import sys |
|
import yaml |
|
|
|
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) |
|
from primes import next_prime |
|
import xngen |
|
import xnncommon |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
description='Test generator for DWCONV2D CHW micro-kernels') |
|
parser.add_argument("-s", "--spec", metavar="FILE", required=True, |
|
help="Spec (YAML) file") |
|
parser.add_argument("-o", "--output", metavar="FILE", required=True, |
|
help='Output (C++ source) file') |
|
parser.set_defaults(defines=list()) |
|
|
|
|
|
TEST_TEMPLATE = """\ |
|
$if SUBSAMPLING == 1: |
|
TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
DWConv2DMicrokernelTester() |
|
.input_width(${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}) |
|
.input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
$else: |
|
TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_width = ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
|
|
$if WIDTH_TILE > 1: |
|
TEST(${TEST_NAME}, output_width_div_${WIDTH_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_width = ${2 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width < ${8 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width += ${WIDTH_TILE * SUBSAMPLING}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
|
|
TEST(${TEST_NAME}, output_width_lt_${WIDTH_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_width = ${max(1, KERNEL_WIDTH - 2 * PADDING)}; input_width < ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(${WIDTH_TILE * SUBSAMPLING}) |
|
.input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
|
|
TEST(${TEST_NAME}, output_width_gt_${WIDTH_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_width = ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${(5 if WIDTH_TILE == 1 else 2) * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
|
|
$if SUBSAMPLING > 1: |
|
TEST(${TEST_NAME}, output_height_eq_${HEIGHT_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_height = ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
|
for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(input_height) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
} |
|
|
|
$if HEIGHT_TILE > 1: |
|
TEST(${TEST_NAME}, output_height_div_${HEIGHT_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_height = ${2 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height < ${8 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height += ${HEIGHT_TILE * SUBSAMPLING}) { |
|
for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(input_height) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
} |
|
|
|
TEST(${TEST_NAME}, output_height_lt_${HEIGHT_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING)}; input_height < ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
|
for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(input_height) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
} |
|
|
|
TEST(${TEST_NAME}, output_height_gt_${HEIGHT_TILE}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_height = ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${(5 if WIDTH_TILE == 1 else 2) * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
|
for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(input_height) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
} |
|
|
|
$if SUBSAMPLING > 1: |
|
TEST(${TEST_NAME}, padding_top_eq_${SUBSAMPLING - 1}) { |
|
$if ISA_CHECK: |
|
${ISA_CHECK}; |
|
for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING + 1)}; input_height < ${3 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING + 1}; input_height++) { |
|
for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
|
DWConv2DMicrokernelTester() |
|
.input_width(input_width) |
|
.input_height(input_height) |
|
.kernel_height(${KERNEL_HEIGHT}) |
|
.kernel_width(${KERNEL_WIDTH}) |
|
.subsampling(${SUBSAMPLING}) |
|
.padding_left(${PADDING}) |
|
.padding_right(${PADDING}) |
|
.padding_top(${PADDING - 1}) |
|
.padding_bottom(${PADDING}) |
|
.Test(${", ".join(TEST_ARGS)}); |
|
} |
|
} |
|
} |
|
""" |
|
|
|
def split_ukernel_name(name): |
|
match = re.fullmatch(r"xnn_(f16|f32)_dwconv2d_chw_ukernel_(\d+)x(\d+)(s2)?p(\d+)__(.+)_(\d+)x(\d+)(_acc\d+)?", name) |
|
assert match is not None |
|
kernel_height, kernel_width = int(match.group(2)), int(match.group(3)) |
|
if match.group(4): |
|
assert match.group(4).startswith("s") |
|
stride = int(match.group(4)[1:]) |
|
else: |
|
stride = 1 |
|
padding = int(match.group(5)) |
|
|
|
height_tile = int(match.group(7)) |
|
width_tile = int(match.group(8)) |
|
|
|
arch, isa, assembly = xnncommon.parse_target_name(target_name=match.group(6)) |
|
return kernel_height, kernel_width, stride, padding, arch, isa, \ |
|
height_tile, width_tile |
|
|
|
|
|
def generate_test_cases(ukernel, kernel_height, kernel_width, subsampling, \ |
|
init_fn, padding, isa, height_tile, width_tile): |
|
"""Generates all tests cases for a DWCONV2D CHW micro-kernel. |
|
|
|
Args: |
|
ukernel: C name of the micro-kernel function. |
|
kernel_height: convolution kernel height assumed by the micro-kernel. |
|
kernel_width: convolution kernel width assumed by the micro-kernel. |
|
subsampling: convolution subsampling (stride) assumed by the micro-kernel. |
|
The same subsampling factor is assumed for both horizontal and |
|
vertical directions. |
|
init_fn: C name of the function to initialize microkernel parameters. |
|
padding: convolution padding value assumed by the micro-kernel for right, |
|
bottom, and left padding. If convolution stride is 1, the same |
|
padding value is assumed for the top padding. If convolution stride |
|
is different than 1, top padding is specified via micro-kernel |
|
parameter, and can be either padding or (padding - 1). |
|
isa: instruction set required to run the micro-kernel. Generated unit test |
|
will skip execution if the host processor doesn't support this ISA. |
|
height_tile: number of output rows processed in one iteration of the main |
|
loop of the micro-kernel. |
|
width_tile: number of output columns processed in one iteration of the main |
|
loop of the micro-kernel. |
|
|
|
Returns: |
|
Code for the test case. |
|
""" |
|
_, test_name = ukernel.split("_", 1) |
|
_, datatype, ukernel_type, _ = ukernel.split("_", 3) |
|
test_args = [ukernel, init_fn] |
|
return xngen.preprocess(TEST_TEMPLATE, { |
|
"TEST_NAME": test_name.upper().replace("UKERNEL_", ""), |
|
"TEST_ARGS": test_args, |
|
"UKERNEL_TYPE": ukernel_type.upper(), |
|
"DATATYPE": datatype, |
|
"KERNEL_HEIGHT": kernel_height, |
|
"KERNEL_WIDTH": kernel_width, |
|
"SUBSAMPLING": subsampling, |
|
"PADDING": padding, |
|
"HEIGHT_TILE": height_tile, |
|
"WIDTH_TILE": width_tile, |
|
"ISA_CHECK": xnncommon.generate_isa_check_macro(isa), |
|
"next_prime": next_prime, |
|
}) |
|
|
|
|
|
def main(args): |
|
options = parser.parse_args(args) |
|
|
|
with codecs.open(options.spec, "r", encoding="utf-8") as spec_file: |
|
spec_yaml = yaml.safe_load(spec_file) |
|
if not isinstance(spec_yaml, list): |
|
raise ValueError("expected a list of micro-kernels in the spec") |
|
|
|
tests = """\ |
|
// Copyright 2020 Google LLC |
|
// |
|
// This source code is licensed under the BSD-style license found in the |
|
// LICENSE file in the root directory of this source tree. |
|
// |
|
// Auto-generated file. Do not edit! |
|
// Specification: {specification} |
|
// Generator: {generator} |
|
|
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/isa-checks.h> |
|
|
|
#include <xnnpack/dwconv.h> |
|
#include "dwconv2d-microkernel-tester.h" |
|
""".format(specification=options.spec, generator=sys.argv[0]) |
|
|
|
for ukernel_spec in spec_yaml: |
|
name = ukernel_spec["name"] |
|
init_fn = ukernel_spec["init"] |
|
pipelined = bool(ukernel_spec.get("pipelined", False)) |
|
kernel_height, kernel_width, subsampling, padding, arch, isa, \ |
|
height_tile, width_tile = split_ukernel_name(name) |
|
|
|
test_case = generate_test_cases(name, kernel_height, kernel_width, \ |
|
subsampling, init_fn, padding, isa, \ |
|
height_tile, width_tile) |
|
tests += "\n\n" + xnncommon.postprocess_test_case(test_case, arch, isa) |
|
|
|
txt_changed = True |
|
if os.path.exists(options.output): |
|
with codecs.open(options.output, "r", encoding="utf-8") as output_file: |
|
txt_changed = output_file.read() != tests |
|
|
|
if txt_changed: |
|
with codecs.open(options.output, "w", encoding="utf-8") as output_file: |
|
output_file.write(tests) |
|
|
|
|
|
if __name__ == "__main__": |
|
main(sys.argv[1:]) |
|
|